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Metal Prepreg Tape and 
Pultruded Shapes 

Metal Prepreg Tape and 
Pultruded Shapes

Tape Width – 0.25 to 1.50”
Tape Thickness – 0.007 to 0.020”
Tubing – 0.25” OD, 0.015” wall
Angle – 0.375” per leg, 90°

 
angle

Other sizes and shapes possible
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Metal Prepreg Tape PropertiesMetal Prepreg Tape Properties

Material = Al2 O3 fibers in pure Al
Temperature = RT
Environment = Air
Direction = [0]

Standard Tape:
Fiber volume of 50%
Width of 0.5 inch
Thickness of 0.015 inch

Material = Al2 O3 fibers in pure Al
Temperature = RT
Environment = Air
Direction = [0]

Standard Tape:
Fiber volume of 50%
Width of 0.5 inch
Thickness of 0.015 inch

Vf Density
(lb/in3)

Width
(in)

Thickness
(in)

F1
tu

(ksi)
E1

t

(Msi)
ε1

tu

(%)

Mean 0.50 0.119 0.377 0.0134 210 33 0.63

Tensile Sample #712

Modulus = 36.13Msi
R2 = 0.9999
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MMC Consolidation MethodsMMC Consolidation Methods

PROCESSING
METHODS

Vacuum Furnacing
Vacuum Bagging

Tape/Fiber Placement Hot Pressing

Filament Winding

Hand lay-up
Weighted fixture
Good for small parts
Good for attachments

Hand lay-up
Evacuated fixture
Larger components

Hand lay-up
Controlled atmosphere
Thicker components
Higher fiber volume
Flat and curved panels

Automated lay-up
Cut/add/feed head
Large complex components
Out-of-autoclave

Automated lay-up
Higher fiber volume
Large simple components
Out-of-autoclave

Adhesive Bonding
Hand lay-up
Room temperature cure
Bag and autoclave
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Metal Prepreg Filament WindingMetal Prepreg Filament Winding
 

Analogous to PMC wet winding
– Based on MetPreg metal prepreg technology
– Spools of fiber are put on creel
– Tension is built into each tow
– Fiber bundle is dipped into the liquid matrix (molten 

aluminum) to impregnate 
– Impregnated fiber bundle is laid onto the mandrel

Low-cost, flexible processing for MMCs

Analogous to PMC wet winding
– Based on MetPreg metal prepreg technology
– Spools of fiber are put on creel
– Tension is built into each tow
– Fiber bundle is dipped into the liquid matrix (molten 

aluminum) to impregnate
– Impregnated fiber bundle is laid onto the mandrel

Low-cost, flexible processing for MMCs
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MMC Filament Wound 
Components 

MMC Filament Wound 
Components



8

Fiber and Matrix Typical PropertiesFiber and Matrix Typical Properties
Property Units Fiber Matrix

Chemical Composition wt. % >99 Al2 O3 99.99 Al

Melting Point °C
°F

2000
3632

660
1220

Filament Diameter μm
in (10-4)

10-12
4-5 -

Crystal Phase α- Al2 O3 -

Density g/cm3

lb/in3
3.9

0.141
2.7

0.098

Tensile Strength MPa
ksi

3100
450

40-50
6-7

Tensile Modulus GPa
Msi

380
55

62
9

Elongation % 0.7-0.8 50-70

Thermal Expansion (100-1100°C) ppm/°C
ppm/°F

8.0
4.4

25
14
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Axial Tension Test ResultsAxial Tension Test Results

Sample Number E22 (Msi) σ22

 

(ksi) Strain @ Max Stress (%)

1 16.894 11.84 0.340

2 16.704 11.90 0.327

3 15.428 10.70 0.233

Average 16.34 11.48 0.300

Std. Dev. 0.80 0.67 0.058

Cv (%) 4.88 5.9 19.5
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Tension Test Stress-Strain CurvesTension Test Stress-Strain Curves
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Torsion Test ResultsTorsion Test Results

Sample Number G12 (Msi) τ12

 

(ksi) Strain @ Max Stress (%)

1 4.494 11.59 4.396

2 7.890 11.30 4.329

3 4.026 11.44 4.361

Average 5.47 11.44 4.362

Std. Dev. 2.11 1.45 0.034

Cv (%) 38.55 1.3 0.8
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Uniaxial Hydroburst TestingUniaxial Hydroburst Testing
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StrengthFiber  DeliveredEfficiencyn Translatio

StrengthFiber  Delivered

Strength Lamina Delivered
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80% 
Translation 
Efficiency

Uniaxial Hydroburst Test ResultsUniaxial Hydroburst Test Results
Wall

Thickness
(in)

Length
(in)

Inner
Radius

(in)

Fiber
Volume
Fraction

Burst
Pressure

(psi)

Delivered
Lamina
Strength

(psi)

Delivered
Fiber

Strength
(psi)

Hoop 
Only
[89]4

0.051 6.000 2.000 0.33 2700 105,882 320,856
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Biaxial Hydroburst TestingBiaxial Hydroburst Testing
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Process DevelopmentsProcess Developments
Low-angle helical winding - 20°Low-angle helical winding - 20°

Integrally Wound Domes 
and Skirts
Integrally Wound Domes 
and Skirts
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Attachment TestAttachment Test
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Attachment Test SummaryAttachment Test Summary

Wall
Thickness

(in)

Fiber
Volume
Fraction

Burst
Pressure

(psi)

Delivered
Hoop
Stress
(psi)

Hoop
Fiber
Stress
(psi)

Translation 
Efficiency

(%)

Recent 
Cylinder 
Tests

0.050 0.43 2812 111,843 263,174 66

MIG 0.051 0.42 2235 87,087 207,349 52

Pulse 
MIG 0.052 0.42 2030 78,839 189,989 48
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Bolt Hole TestBolt Hole Test

Cylinder
ID

Burst
Pressure

(psi)

Delivered Hoop
Stress
(psi)

Hoop Fiber
Stress
(psi)

Translation 
Efficiency

(%)

100505 1078 40,679 104,306 26

101005 1257 50,280 125,700 31
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Impact TestImpact Test
6-ply cylinders
2-lb weight
0.625-inch indenter
Drop heights of 6 
and 12 inches
Hydroburst testing 
after impact

6-ply cylinders
2-lb weight
0.625-inch indenter
Drop heights of 6 
and 12 inches
Hydroburst testing 
after impact

Cylinder
ID

Drop
Height

(in)

Burst
Pressure

(psi)

Delivered Hoop
Stress
(psi)

Hoop Fiber
Stress
(psi)

Translation
Efficiency

(%)

100405 6 1686 64,846 162,115 41

100605 12 1065 40,189 100,472 25
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Pinned Closure TestPinned Closure Test
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Pinned Closure Test SummaryPinned Closure Test Summary

Tests were to establish baseline properties
Detailed stress analysis not yet completed
AT 1000 psi internal pressure, the stress in the MMC near 
each hole would be over 56 ksi
This is comparable to a quasi-isotropic PMC
Lower helical angle would dramatically effect the results

Tests were to establish baseline properties
Detailed stress analysis not yet completed
AT 1000 psi internal pressure, the stress in the MMC near 
each hole would be over 56 ksi
This is comparable to a quasi-isotropic PMC
Lower helical angle would dramatically effect the results
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MMC Design Tool DevelopmentMMC Design Tool Development
Design tool for modeling MMC behavior is being developed for 
predicting properties of cylinders
Fiber strength adjusted to match burst pressure from uniaxial 
hydroburst tests (first row of table)
Model predictions show good agreement with biaxial experimental 
data when the failure mode is hoop fiber failure (rows two and four)
Other failure modes, such as helical fiber or matrix failure, show 
slight discrepancy from experimental results (row three)
Model validation and modification is on-going

Design tool for modeling MMC behavior is being developed for 
predicting properties of cylinders
Fiber strength adjusted to match burst pressure from uniaxial 
hydroburst tests (first row of table)
Model predictions show good agreement with biaxial experimental 
data when the failure mode is hoop fiber failure (rows two and four)
Other failure modes, such as helical fiber or matrix failure, show 
slight discrepancy from experimental results (row three)
Model validation and modification is on-going

Cylinder
Lamination

Assumed Fiber
Strength (ksi)

Assumed
Translation
Efficiency

Predicted
Burst

Pressure (psi)

Actual
Burst

Pressure (psi)

Percent
Difference

(%)

904 249 0.62 2813 2812 0

904 249 0.62 728 777 -6

90/±45/90 249 0.62 1728 1472 17

±45/90/90/±45 249 0.62 3250 3393 -4
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Preliminary IM Modeling ResultsPreliminary IM Modeling Results
Design Description Maximum predicted fiber stress as 

a fraction of the allowable fiber 
stress

IM test being 
modeled

Instantaneous response to 
design loads at 75ºF

0.925, Failure not predicted None

Instantaneous response to 
design loads at 300ºF

0.978, Failure not predicted Fast cookoff

Instantaneous response to 
design loads at 500ºF

1.42, Failure predicted Fast cookoff

30 min. stress-rupture 
response to design loads at 
300ºF

1.49, Failure predicted Slow cookoff
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ConclusionsConclusions
Scale-up of MMC filament winding process 
to 23-inch overall cylinder length has been 
completed
Good translation of fiber properties has 
been achieved with a 10-inch gage length
Longer process length makes helical fiber 
angles of ±20° achievable
MMC Design Tool being validated through 
experimental results
MMC Design Tool and burst test results 
being used to design cylinders for IM 
testing

Scale-up of MMC filament winding process 
to 23-inch overall cylinder length has been 
completed
Good translation of fiber properties has 
been achieved with a 10-inch gage length
Longer process length makes helical fiber 
angles of ±20° achievable
MMC Design Tool being validated through 
experimental results
MMC Design Tool and burst test results 
being used to design cylinders for IM 
testing
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Future WorkFuture Work
Determine the effect on pressure vessel 
performance with varying helical ply angle
Refine the process for winding integral 
end domes, bosses, and skirts
Design and produce cylinders for IM 
testing
Look for additional partners interested in 
teaming up on SBIR programs to further 
develop MMC filament wound pressure 
vessels, storage tanks, space structures, 
and flywheels

Determine the effect on pressure vessel 
performance with varying helical ply angle
Refine the process for winding integral 
end domes, bosses, and skirts
Design and produce cylinders for IM 
testing
Look for additional partners interested in 
teaming up on SBIR programs to further 
develop MMC filament wound pressure 
vessels, storage tanks, space structures, 
and flywheels
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Questions?Questions?

Visit Touchstone Research Laboratory on the Web

www.trl.com www.metpreg.com

E-mail:  metpreginfo.com
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