#### ENVIRONMENTALLY FRIENDLY PROPELLANT FOR THE LARGE CALIBER TRAINING ROUNDS

T.G. Manning,\* J. Mishock, C. Adam and J. Kostka U.S. Army TACOM-ARDEC Picatinny Arsenal

R. Lieb and M. Leadore Propulsion Systems Branch, Ballistics and Weapons Concepts Division Weapons and Materials Research Directorate, Army Research Laboratory

> D.A. Worrell, R. Hollins and S.J. Ritchie ATK/Radford Army Ammunition Plant Radford, VA 24060



#### TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

NDIA 2007 Insensitive Munitions & Energetic Materials Technology Symposium Miami, Florida Oct 15-18, 2007

> **TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.** Approved for public release; distribution unlimited







# Team Objective

#### System Requirements

- Propellant Requirements
- Mechanical Properties
- Manufacturing Process
- Performance Test
- Conclusions





## Collaborative Effort: ARDEC, JMC, and ATK Development IPT

**Team Objective:** Replace M-14 propellant in the 120mm tank ammunition training rounds with an alternative propellant that has improved Insensitive Munitions (IM), Green, and Vulnerability characteristics.

| Name                        | Organization              |  |
|-----------------------------|---------------------------|--|
| John Kostka – Co-Chairman   | ARDEC – PM                |  |
| D. A. Worrell – Co-Chairman | ATK-Radford – PM          |  |
| Dena Porterfield            | AFSC – Contracts          |  |
| Thelma Manning              | ARDEC - Engineer          |  |
| Andrew Krause               | ARDEC – QA                |  |
| Jason Mishock               | ARDEC – Systems Engineer  |  |
| Katherine Murphy            | ARDEC – QA                |  |
| Matthew Rinehardt           | ATK – PM Engineer         |  |
| Mark Cook                   | ATK – QA                  |  |
| Roger Hollins               | ATK – Product Engineering |  |
| Steve Ritchie               | ATK – Ballistician        |  |
| Carlton Adams               | ARDEC - Ballistician      |  |

#### M14 Propellant Used in 120mm Training Rounds Has Drawbacks





| Ingredient, wt. %     | M14             |  |
|-----------------------|-----------------|--|
| NC, 13.15% N          | 90.0 ± 2.0      |  |
| DNT                   | 8.0 ± 2.0       |  |
| DBP                   | 2.0 ± 1.0       |  |
| DPA (added)           | 1.05 ± 0.15     |  |
| Graphite (added)      | $0.06 \pm 0.04$ |  |
| Residual Solvent      | 0.7 Max         |  |
| Moisture              | 0.6 ± 0.2       |  |
| Flame Temp., [K]      | 2774            |  |
| Ballistic Pot., [J/g] | 3982            |  |
| Abs. Density, [g/cc]  | 1.60            |  |

- Residual Solvent implicated in July 2002 and May 2003 Tank Fires
- DNT, DBP and DPA are environmentally undesirable
- IM Properties poor compared with tactical ammunition



#### M865 TPCSDS-T

Projectile Weight = 5.50 kgMV (21 °C) =  $1700 \pm 20 \text{ m/s}$ MV (52 °C) =  $1740 \pm 20 \text{ m/s}$ MV (-32 °C) =  $1620 \pm 30 \text{ m/s}$ Pressure (63 °C) <= 5900 bars M14 Charge Weight = 7.2 kg

<u>M1002 MPAT-TP-T</u> Projectile Weight = 10.55 kg MV (21 °C) = 1375 ± 10 m/s MV (52 °C) = 1404 ± 10 m/s MV (-32 °C) = 1335 ± 10 m/s Pressure (63 °C) <= 6400 bars M14 Charge Weight = 7.6 kg







- 1. Eliminate (or reduce) residual solvents.
- 2. Meet existing interior ballistic requirements for the M865 and M1002.
- 3. Improved IM characteristics for each round.
- 4. Affordable solution relative to existing M14 costs.
- 5. Environmentally friendly formulation and process.
- 6. Producible at the quantities required to meet near term cartridge needs.
- 7. Propellant compatible with existing cartridge materials.
- 8. Propellant shall not negatively impact barrel/gun tube life.
- 9. Propellant storage life and hazard classification meet existing requirements.

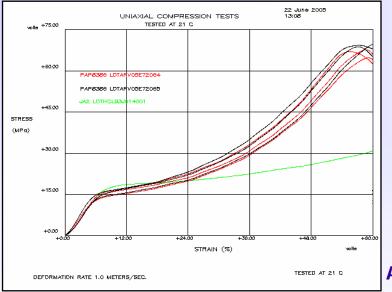
### PAP8386 – ARDEC Formulation



## An Excellent Candidate for the Training Rounds



RDECOM


| Thermochemical Parameter       | Value  |
|--------------------------------|--------|
| Flame Temperature, [K]         | 2948   |
| Impetus, [J/g]                 | 1063.6 |
| Gas Molecular Weight, [g/gmol] | 23.049 |
| Covolume, [cc/g]               | 1.042  |
| Frozen Gamma                   | 1.244  |

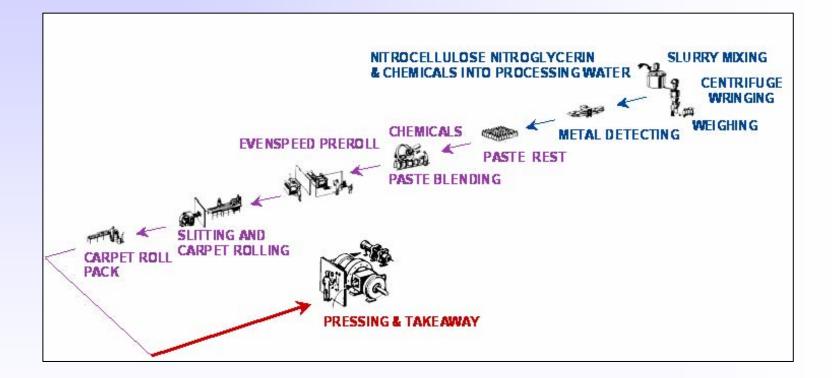
- Solventless formulation Completely eliminates solvent vapor fire potential
- Material Properties similar to JA2 Improved impact sensitivity
- Environmentally-friendly formulation VOC's, DNT, DPA and DBP eliminated
- Same Ingredients as JA2 and RPD380
  - Compatible with existing systems
  - 1.3c Hazard Classification
  - Similar storage life
- Flame Temperature < 3000 K Low barrel erosion

#### PAP8386 Has Demonstrated



### Superior Properties In High Rate Mechanical Response Testing At ARL



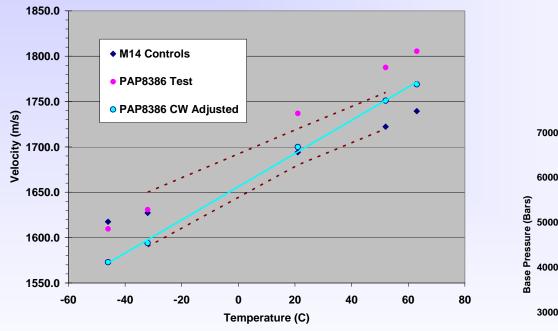

RDECOM



Ambient Results for PAP8386 compared to JA2

"Overall, the PAP8386 mechanical response was very good. In particular, the -32°C and -46°C responses were most impressive. The minimal amount of fracture observed at these temperatures is atypical of the single-, double-, triple-base, and composite gun propellants that have been mechanically tested by the Army Research Laboratory."

#### **RDECOM** A Solventless Propellant Is the Best Solution To The Requirements

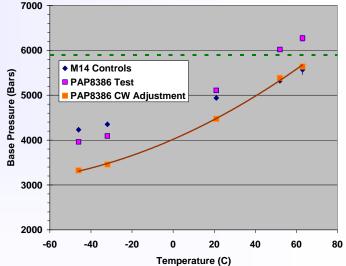



#### Solventless propellant manufacturing process at the Radford Army Ammunition Plant

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

# Requirements For Muzzle Velocity

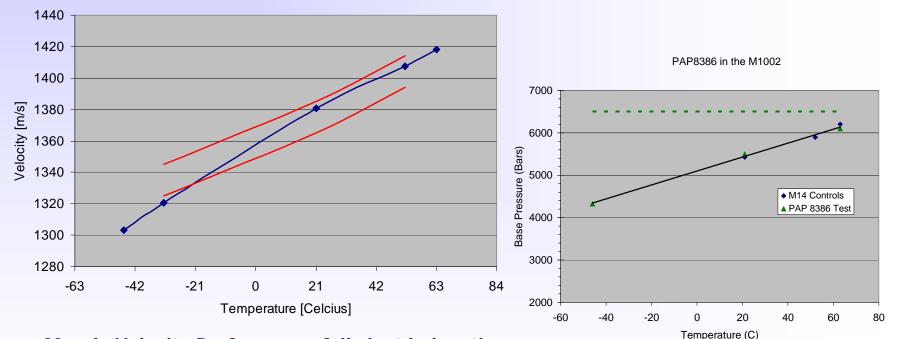





PAP8386 in the M865

Muzzle velocity falls within M865 requirements

Peak pressure is equivalent to existing round


PAP8386 in the M865



#### TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.



PAP8386 in the M1002



Muzzle Velocity Performance falls just below the performance envelope at -32 C. Further optimization is necessary.

Pressure levels equivalent to existing round



#### **CONCLUSIONS:**



## PAP8386 Is A Strong Replacement Candidate For M14 In 120mm Tank Training Ammunition

- Completely eliminates residual solvents.
- Meets M865 ballistic requirements.
- Meets M1002 ballistic requirements above -21 C. Additional work needed to improve low temperature match.
  - IM Improvement demonstrated improvement in impact response.
  - Affordable solution– economy of scale will make PAP8386 affordable.
- **Environmentally friendly solventless process removes VOC's, DNT, DBP and DPA.**
- Manufacturing capacity existing U.S. Army solventless facilities at RFAAP sufficient for near term requirements.
- Propellant is compatible with existing cartridge materials.
- Propellant shall not negatively impact gun barrel life low flame temperature.
- Propellant storage life of 30 years and hazard classification 1.3c meet existing requirements.