A scientific review of the current state of IM mitigation devices for use with rocket motor systems and the future development outlook

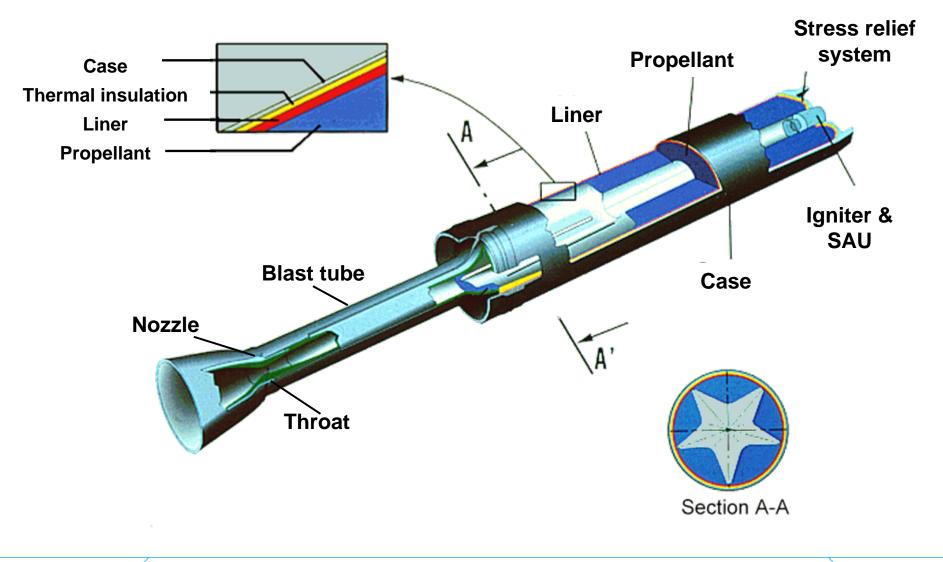
IMEMTS – 17th October 2007 Andrew Strickland and Jean-Claude Nugeyre

 As a system's IM response signature is becoming an increasingly important customer requirement the question remains as to what extent full IM compliance can be achieved

- No in-service RM design is fully IM compliant
- Some recent technical developments have closed gap
 - JCM, SLIM, amongst others

Introduction

- Over many years mitigation technologies have been integrated into propulsion system designs
- The aim of this presentation is to present a review of the current state-of-the-art of IM mitigation technology (MT)
 - Including Roxel examples
 - Recommend areas and level of future development work



• STANAG 4439 edition 2 and AOP-39 edition 2 give definitions, threats, IM requirements, test procedures and guidance for interpretation of responses:

DESDONSE	MUNITION B	EHAVIOUR		EFFI	ECTS	
RESPONSE	ENERGETIC MATERIAL	CASE		PROJECTION OF ENERGETIC MATERIALS	PROJECTION OF FRAGMENTS	OTHER
I	-Detonation -Supersonic decomposition reaction	-Very fast plastic deformation -Total fragmentation	deformation -Damage to -All the materials react fragmentation of		-Large craters in the ground.	
II	-Partial detonation	-Partial fragmentation + large fragments	-Ditto	-Ditto -Ditto		-Ditto -Proportional to % of detonating material
III	-Fast combustion of confined material (Explosion) -Local pressure build up	-Violent breaking into large fragments	-Blast effect < detonation -Damage to neighbouring structures -ΔP > 50 mbar at 15 m	-Scattering of burning materials -Risk of fire	-Long range projection -Damage to metal plates (breaks, rips, cuts)	-Small craters in the ground
IV	-Combustion/Deflagration -Non-violent pressure release	-Breaks but does not fragment into more than 3 parts -Expulsion of end caps -Gases release through opening	-Blast effect limited to ΔP < 50 mbar at 15 m	-Scattering of materials -Risk of fire	-Expulsion of end caps and large structural parts -No significant damage	-Damage caused by heat and smoke -Propulsion of unattached sample
v	-Combustion	-Split in a non-violent way -Smooth release of gases -Separation of ends	-Blast effect limited to ∆P < 50 mbar at 5 m	-Energetic materials remain nearby (< 15 m)	-Debris remains in place, except covers -No fragment of more than 79J or more than 150g beyond 15m	-Heat flow < 4 KW/m² at 15 m

Guidance on Interpretation of IM Response in AOP-39 (Annex I)

Current IM RM Design Methodology

- Thermal barriers to delay reaction and possibly give orientation to a case failure (FH)
- Venting devices, case technologies to decrease and control burst effects (FH & SH)
- Pre-ignition of propellants at a temperature lower than the threshold of thermal decomposition (SH)
- Modified propellants (SH)
- Mechanical threats: Bullet Impact (BI) & Fragment Impact (FI)
 - Less shock sensitive propellants (low card gap test and high velocity (> 600m.s⁻¹) shot gun test results)
 - External barriers, case technologies to absorb impact energy & increase venting at EM reaction or disrupt effectively upon impact (e.g. SSL)
 - Internal barrier, foam in the inner bore of the charge
- Detonation threats: Sympathetic Reaction (SR) & Shape Charge Jet (SCJ)
 - Less shock sensitive propellants
 - Appropriate storage barriers

IM Mitigation Review – Performance Criteria

Parameter Assessment Key	Below desired reqs.	Close to desired reqs.	Meeting desired reqs.
Type of device/technique	Active	N/A	Passive
Expected achievable IM response	<	IV	V
Trial result attained	< 111	IV	V
Requires combination of IM technology?	Y	N/A	N
No. of threats mitigated	1	2	>3
Maturity of device (TRL ranking)	1 - 3	4 - 6	7 - 9
Power demand for operation	H or M	L	Zero
Complexity level	н	М	L
Mass level	н	М	L
Technical risk level	н	М	L
Reliability level	L	М	Н
IM ageing behaviour effect	H or M	L	Zero
Development cost level	н	М	L
Recurrent cost level	н	М	L
High or low pressure venting	н	N/A	L
Multi-directional or longitudinal venting	L	N/A	М
Pre-emption of reaction	н	М	L or Zero
Ease of Retrofittable	L	М	н
Generic design level	L	М	н
Reusable?	N	N/A	Y
No. of systems mitigated per device	1	2 - 5	> 5

- Active systems rely on the initiation of an energetic device to cut open the case or create sufficient weakness to allow a relatively benign separation at a certain pressure
- **Passive systems** rely on chemical or physical changes within specific materials to allow the creation of vent holes or the benign expulsion of end plates / closures
- Low pressure: A vent pre-prepared before propellant ignition that offers negligible resistance to the onset of attempted pressurisation after an IM stimulus
- **High pressure**: A vent, which is a region of deliberate weakness created prior to propellant ignition, that furthermore requires significant pressure to create full venting relief after an IM stimulus

IM MT Review Presentation

IM Mitigation Review – Results

Туре	Description	Ref.	Mechanism	Applications / Location	IM Threat Mitigation Criteria Compliance Evaluation (%)						Technology	
					FH	SH	BI	FI	SR	SCJ	Experience	
Pre-	Pre-emptive device	[16]	Initiate the igniter pre-empting propellant reaching auto-ignition temperature	Internal	N/A	79%	N/A	N/A	N/A	N/A	Tested	
ignition	Low Temp. Igniter	[25]	Ignites propellant before main propellant reaches auto-ignition temperature	internal	N/A	70%	N/A	N/A	//A N/A N/A Str //A N/A N/A Str //A N/A N/A Str //A N/A N/A Str //A N/A N/A Cor //A N/A N/A Str //A N/A N/A Str //A N/A N/A Str //A N/A N/A Str		Tested	
	SMA disengaging thread	[22]			71%	65%	N/A	N/A	N/A	N/A	Studies	
	SMA disengaging end ring	[27]			71%	60%	N/A	N/A	N/A	N/A	Studies	
	LMA thread insert		Material properties intiate release of the	Within end	62%	54%	N/A	N/A	N/A	N/A	Concept	
	LMA locking wire		closure retention	closure	65%	57%	N/A	N/A	N/A	N/A	Concept	
	LMA helix	[19]			63%	56%	N/A	N/A	N/A	N/A	-	
	LMA disengaging end ring	[18]			60%	52%	N/A	N/A	N/A	N/A	-	
	SMA buckle bars	[22]	Material properties intiate disruption of the	Externally	79%	73%	N/A	N/A	N/A	N/A	Studies	
	SMA cutter	[22]	case	attached to case	76%	70%	N/A	N/A	N/A	N/A	Studies	
	LMA case slots	[15]	Material properties of slots melt at set temperature	Within case structure	67%	59%	N/A	N/A	N/A	N/A	-	
Mantina	Case patch		Resin material properties	Externally attached to case	73%	63%	N/A	N/A	N/A	N/A	Studies	
Venting	Closure resin weakening	[21]	weakened/destroyed with temperature		70%	59%	N/A	N/A	N/A	N/A	Concept	
	Shear closure	[24]	Material properties fail under extreme pressurisation	Within end closure	70%	68%	70%	N/A	N/A	N/A	Tested	
	Stress grooves	[25]	Allows case to fail along thinner regions upon pressurisation	Within case structure	84%	75%	81%	78%	N/A	N/A	Tested	
	Intumescent paint (partial cover)	[25]	Preferential failure along region of no paint	Externally applied to case	81%	N/A	N/A	N/A	N/A	N/A	Tested	
	Internal insulation	[25]	To delay response	Internal	81%	N/A	N/A	N/A	N/A	N/A	Tested	
	Case cutter	[29]	Thermal detection initiates detonation cord	Externally	67%	N/A	N/A	N/A	N/A	N/A	-	
	TIVS device	[20]	to disrupt case	attached to case	68%	N/A	N/A	N/A	N/A	N/A	-	
	Thermite patches	[17]	Exothermic reaction weakens case and ignites propellant	Internal or external	59%	59%	N/A	N/A	N/A	N/A	-	
	Aluminium case	[7]			89%	N/A	89%	86%	83%	N/A	Tested	
	SSL case	[7]	1		89%	N/A	89%	86%	83%	N/A	Tested	
0	KOA (no resin) case	[7]	Lose mechanical strength with temperature	Casing	89%	N/A	89%	83%	83%	N/A	Tested	
Case	Composite case	[26]	and disupts effectively with impact threats	Casing	87%	N/A	87%	84%	81%	N/A	Tested	
	Hybrid aluminium/kevlar case (with resin)	[25]			89%	N/A	89%	83%	83%	N/A	Tested	
	Hybrid steel/carbon slotted case (with resin)	[25]	1		87%	N/A	87%	81%	81%	N/A	Tested	
D	External impact protection	[14]	Reduces impact energy	External	86%	N/A	86%	86%	86%	79%	-	
Barrier	Bore foam	[30]	Reduce propellant impact debris energy	Internal	N/A	N/A	82%	79%	N/A	N/A	Studies	
Energetic material	Propellant (All types)	[1,4,7, 9,14]	Reduced sensitivity, decreased card gap, reduced reaction violence (avoiding XDT / DDT / SDT)	Internal	79%	79%	79%	79%	79%	72%	Tested	

Values are extracted from Roxel's assessment of each MT evaluation (individual results beyond scope for discussion) against the performance criteria discussed previously

- a part of

- Roxel has an excellent pedigree with IM RM designs
 - ASRAAM RM is currently highest IM rating solid RM in service with UK MoD
 - Pioneers IM mitigation technology:
 - Manufacture of SSL cases
 - Pre-ignition SH mitigation device
 - Case grooves
 - Low temperature igniter
 - KOA and aluminium cases with GAP RDX propellant
 - Many more...

Response of a Alu. case to a BI IM trial

Response of a Composite case to a BI IM trial

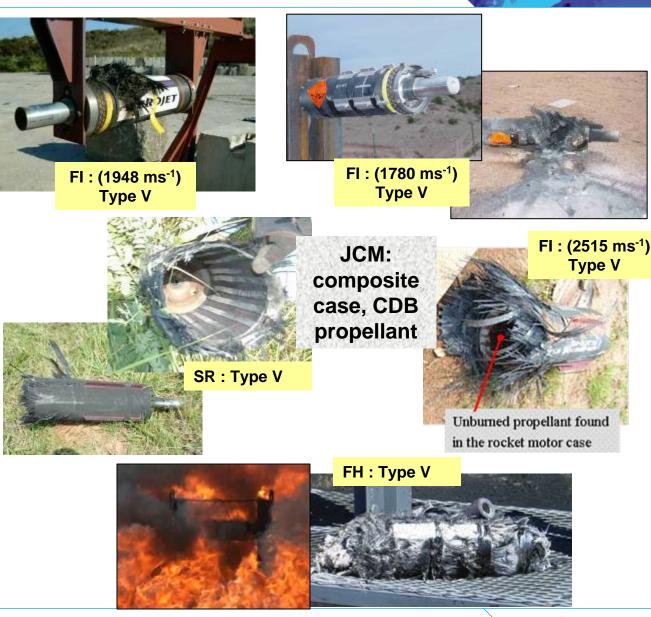
Response of a SSL case to a BI IM trial

Roxel's ASRAAM RM

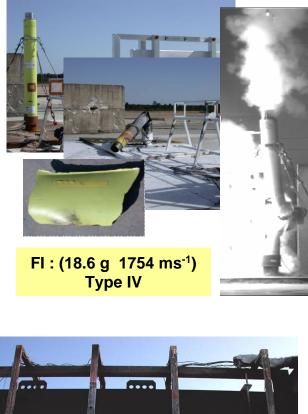
Response of a KOA case to a BI IM trial

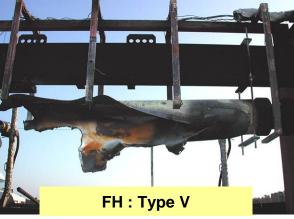
• Selection of Roxel's IM RM signatures:

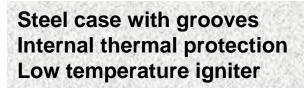
Status		Techno	logy Descripti	on	IM (Characte	eristic of	rocket m	otor (tes	sted)
Olalus	Calibre (mm)	Propellant	Case	Add. IM Technology	FH	SH	BI	FI	SR	SCJ
Qualification	128	Composite	Alu.	-	V		V			
Tech. Demonstrator	150	Composite	KOA	LT Igniter	V	IV				
In Service	160	Composite	Steel	Intumescent paint	V					
In Service	227	Composite	Steel	-						
Tech. Demonstrator	227	Composite	Steel 1	Grooves, LT igniter						
Tech. Demonstrator	227	Composite	Steel 2	Grooves, LT igniter	V	III	IV	IV		
Qualification	235	Composite	Alu.	LT Igniter	V		IV			
Qualification	150	CMDB	KOA	-	V		V			
Tech. Demonstrator	140	XLDB	KOA	-	V		N/R			
In Service	136	CDB	KOA	-	V		V			
Tech. Demonstrator	136	EDB	KOA	-	V		N/R			
Qualification	150	CDB	KOA	-	V		V			
Tech. Demonstrator	150	GAP Comp.	KOA	-	V		N/R			
Development	240	Composite	Alu.	-	V		IV			
In Service	70	EDB	Alu.	-	V	III	V			
Tech. Demonstrator	70	EDB	SSL	-	V	- 111	V			
In Service	70	EDB	Alu.	-	V	- 111	V		<	
Tech. Demonstrator	70	EDB	SSL	-	V	V	V	- 11		
In Service	70	EDB	Alu.	-	V	V	N/R			
In Service	70	EDB	Alu.	In container	V	IV			<	
Tech. Demonstrator	70	EDB	Alu.	-	V	V	V	N/R	<	
In Service	127	EMCDB	SSL	-	V		V			
In Service	124	EDB	KOA	-	IV	IV	IV		V	IV
In Service	114	CDB	KOA	-	IV	- 111	IV		- 111	l I
Tech. Demonstrator	180	CDB	CFRP	-	V		V	V	V	
Tech. Demonstrator	180	EMCDB	SSL	PID, shear closure	V	V	V	V	V	
In Service	160	Composite	SSL	LT Igniter	V	IV	V			



SH : Type V




SLIM: SSL case, EMCDB propellant, pre-ignition SH mitigation device



IM MT Review Presentation

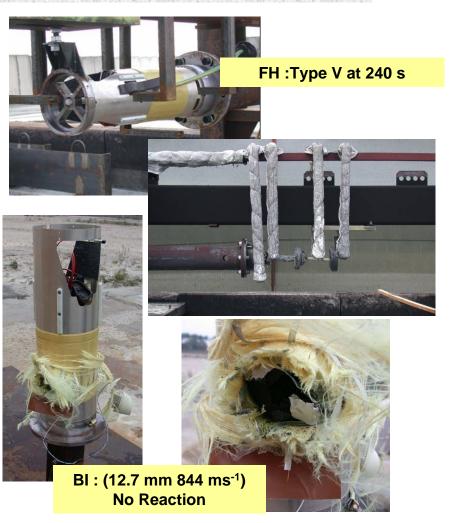
BI : (12.7 mm 857ms⁻¹) Type IV

SH : Type III

Aluminium case 128 mm HTPB HBR Propellant grain

BI : (12.7 mm 860 ms⁻¹) Type V

FH :Type V


Aluminium case 235mm HTPB HBR Propellant grain

BI : Type IV reaction Due to overpressure at 15 m (12.7 mm 857 ms⁻¹)

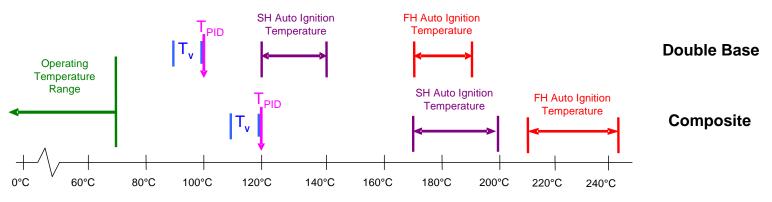
Hybrid case Motor (KOA) 150 mm GAP RDX Propellant grain

Parameter	RM Venting					Pre-ignition	Case	Barrier	Energetic	Overall
Falameter	FH	SH	BI	FI	Overall	Pre-ignition	Case	Barrier	Material	Overall
Type of device/technique	L	L	L	L	L	L	L	L	L	L
Expected achievable IM response	L	М	Н	Н	М	М	L	L	L	L
Trial result attained	М	Н	Н	Н	Н	Н	М	L	L	М
Requires combination of IM technology?	L	Н	L	Н	М	Н	М	Н	Н	Н
No. of threats mitigated	Н	Н	L	L	М	Н	L	L	L	L
Maturity of device	М	Н	L	L	М	L	L	L	L	L
Power demand for operation	L	L	L	L	L	L	L	L	L	L
Complexity level	М	М	М	L	М	L	L	L	L	L
Mass level	М	М	L	L	L	L	L	Н	L	L
Technical risk level	Н	Н	М	L	М	М	L	L	L	L
Reliability level	М	Н	Н	Н	Н	М	L	L	L	L
IM ageing behaviour effect	М	М	L	L	L	М	L	L	Н	L
Development cost level	Н	Н	Н	Н	Н	L	Н	Н	L	М
Recurrent cost level	L	L	L	L	L	L	L	Н	L	L
High or low pressure venting	М	М	Н	Н	Н	N/A	L	N/A	N/A	М
Multi-directional or longitudinal venting	М	М	М	L	М	N/A	L	N/A	N/A	L
Pre-emption of reaction	L	Н	L	L	L	Н	L	L	L	L
Ease of Retrofittable	М	Н	М	L	М	Н	Н	L	Н	Н
Generic design level	Н	Н	Н	Н	Н	М	Н	L	Н	Н
Reusable?	Н	н	Н	Н	Н	Н	Н	L	Н	Н
No. of systems mitigated per device	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
No. Reviewed	18	14	2	1	18	2	6	2	1	29

Summarised Overview of IM Mitigation Technology Performance Review Evaluating Areas and Levels of Future Development

Key for areas and level of future development

Requiring a high level of improvement	H
Requiring a medium level of improvement	М
Requiring a low level of improvement	L



- General
 - Development of more generic, retrofittable, reusable designs
 - Single technologies mitigating full IM threat spectrum
 - Technology that can mitigate a multitude of systems at once
- Barrier technology
 - More lightweight, low cost protective barrier solutions which mitigate a group of systems
 - Disruption fields
 - RM barrier technology
 - Flexible, lightweight and extremely high energy absorbing materials
 - Thermal protective barrier
 - Develop complete thermal and mechanical protective barrier on demand
 - Expulsion of a rapidly expandable material

- Pre-ignition / pre-emptive technology
 - Conduct more IM trials testing the current state of the art
 - Reduce the pre-emptive qualities
 - Closer to auto-ignition temperature may result in an increase in subsequent reaction violence

SH and FH Typical Response Temperatures

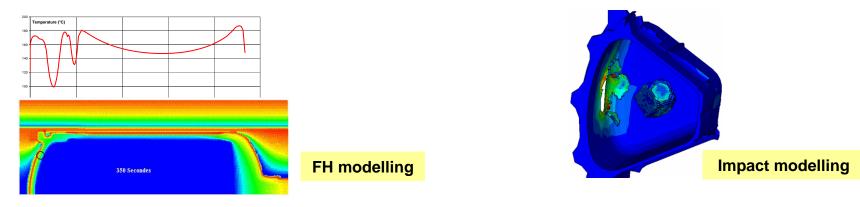
- Investigate non-ignition techniques; substance which provides, for example:
 - A counteractive cooling element to thermal threats
 - Or renders EM inactive
 - Or ballistically modifies pressure / burn rate relationship
 - Subsequent ignition has a reduced gas generation flux or extinguishes propellant

IM Technology Future Development Evaluation 4

- Case technology
 - Ability to create venting under SH stimulus, for example:
 - Weaken structurally under the SH stimulus conditions
 - Or transfer SH response to a FH
 - Develop low cost IM cases
- RM Venting technology
 - Greatest responsibilities with SH IM mitigation
 - Maturity or demonstrated successfulness of these technologies lacking
 - Require more full scale IM testing of current / newly developed low pressure designs within a RM

Page 16

- Incorporate pre-ignition elements
- EM Technology
 - Investigate propellant IM ageing effects and develop combative techniques or eliminate any deterioration



IM Modelling Evaluation

- Modelling of the IM phenomena and prediction of the subsequent reaction effects:
 - Will highlight problematic design features and further the design of IM mitigation technology
 - Assist in IM trial instrumentation and analysis
 - Requires reliable input data which is sometimes difficult to obtain in order to conduct accurate state modelling of the stimuli
 - e.g. wind, fire, positioning within trial, clamps and fixings, etc...
 - Challenging to predict the real reaction effects
 - e.g. distance of inert and EM projections, overpressure levels, number of fragments, etc...

Modelling technique	FH	SH	BI	FI	SR	SCJ
Model of state	L	L	L	М	М	Н
Prediction of severity of response	М	Н	М	Н	М	Н

Areas and Level of Future Development for IM Prediction Modelling for the Propulsion System

Conclusion

- No in-service RM system is currently fully IM compliant
- Reviewed broad range of technologies providing mitigation across the IM threat stimuli
 - Emphasis on propulsion system aspects
- Facilitated subsequent recommendations for required areas and level of future research and development
 - Case technology able to create sufficient venting in response to the SH stimulus
 - Development of generic, retrofittable, reusable designs
 - Improvement of IM modelling response severity predictive capability
 - Individual technologies providing full IM mitigation and/or for a multitude of systems
 - SCJ IM mitigation
- Implementation and success of some or all of these improvements would considerably advance the capability for achieving fully IM compliant propulsion systems

Any Questions ?

Andrew Strickland

Roxel (UK Rocket Motors) Ltd.

Tel.: +44 1562 828002

Email: and rew.strickland@roxelgroup.com

Jean-Claude Nugeyre

Roxel France

Tel.: +33 5 56 70 75 08

Email: jc.nugeyre@roxelgroup.com