

Confined Energetic Cook-off *Mitigation as a Function of Heating Rate*

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

S. DeFisher, T. Madsen, N. Al-Shehab, E.L. Baker, A. Wilson, and B. Fuchs RDECOM-ARDEC

2007 Insensitive Munitions and Energetic Materials Technology Symposium 15th-18th October, 2007

- Focus
- Venting Concept
- Testing
- Experimental Results
- Modeling
- Conclusions

Background

- Lack of Insensitive Munitions (IM) compliance has caused the loss of hundreds of lives as well as the loss of material (greater than \$250M) and/or reduced operational capability
- Most warheads behave violently when subject to various external insults such as cook-off
- Mil-STD 2105C governs IM related testing
 - 5 levels of severity; Type I Detonation Type V Burning
- STANAGs supplement Mil-STD 2105C
 - STANAG 4240 Liquid Fuel/External Fire
 - STANAG 4382 Slow Heating

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Emphasis on IM Technology Development

Focus

- IM warhead venting technology: survive unplanned stimuli produced by fires (slow & fast cook-off)
 - Venting technology and venting concepts demonstrations developed for melt pour, cast cure, and pressed formulations
- Although heating rate is specified, other heating rates are useful in order to design robust venting solutions (6, 50, and 500 °F/hr)

- Warhead venting is not a new concept [T. Swierk, 1993]
- Prevent high pressures and temperatures that lead to violent response during cook-off
- Passive venting: thermal or pressure based venting, melt liners
 - Active venting: sensor produces a chemical or mechanical venting response
- Lack of technology: explosive venting characterization and design technology
- Small scale hardware variable heating rates and HE type
- HE Formulations
 - Composition B
 - PBXN-109
 - PAX-3

Matched HE pellet and liner

Heating

bands

-Vent location

Thermocouple leads

Assembled fixture TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Small hardware loaded in the firing chamber

RDECOM Small Scale Testing – Typical Results

Small hardware (from 1 to r – untested, no go, go)

RDECOM Small Scale Testing – Typical Results

Standard video

RDECOM Small Scale Testing – Typical Results

High speed photography during testing

Experimental Results

Explosive	Ht Rate (°F/hr)	G/NG	Diam (in)	Reaction Notes	RxnT(°F)
Comp-B	6	Go	0.4	Violent reaction	355
Comp-B	6	No Go	0.45	lgnited in vent disk, fast burn	362
Comp-B	6	No Go	0.5	External ignition propagated inside, mild burn	376
Comp-B	6	No Go	0.6	lgnited in vent disk, expelled material, fast burn	Unkn
Comp-B	50	Go	0.1	Vent disk blown out	370
Comp-B	50	Go	0.2	Explode	400
Comp-B	50	No Go	0.4	Burn	390
Comp-B	50	Go	0.4	Explode, top end plate came off	376
Comp-B	50	No Go	0.4	Burn Off	376
Comp-B	50	No Go	0.4531	Burn off, Fixture in one solid piece	362
Comp-B	50	No Go	0.5	Burn Off	415
Comp-B	50	No Go	0.5	Burn Off	400
Comp-B	500	Go	0.1	Violent, bolts sheared, center burst	438
Comp-B	500	Go	0.15	Violent, bolts sheared, center burst	458
Comp-B	500	No Go	0.2	Burn Off	467
Comp-B	500	No Go	0.3	Burn Off	425

6°F/hr - .4/.45 50°F/hr - .4/.45 500°F/hr - .15/.2

Comp B results

Experimental Results

Explosive	Ht Rate (°F/hr)	G/NG	Diam (in)	Reaction Notes	Rxn T (°F)
PBXN-109	6	Go	0.3	w/HDPE Liner, Exploded center section	336
PBXN-109	6	No Go	0.4	w/HDPE Liner, Burn Off	320
PBXN-109	6	No Go	0.5	w/HDPE Liner,	330
PBXN-109	50	Go	0.2	w/HDPE Liner, Exploded	357
PBXN-109	50	No Go	0.2	No HDPE Liner, Burn Off	375
PBXN-109	50	No Go	0.228	w/HDPE Liner, extrusion and burn off	370
PBXN-109	50	Go	0.266	w/HDPE Liner, exploded but not all HE reacted	363
PBXN-109	50	No Go	0.3	w/HDPE Liner, Burn Off	377
PBXN-109	50	No Go	0.4	w/HDPE Liner, Bum Off	352
PBXN-109	50	No Go	0.5	w/HDPE Liner, Bum Off	367
PBXN-109	50	Go	0.5	No HDPE Liner, Exploded	370
PBXN-109	50	No Go	0.5	No HDPE Liner, Burn Off	390
PBXN-109	50	No Go	0.7	No HDPE Liner, Burn Off	374
PBXN-109	500	Go	0.1	w/HDPE Liner, Exploded	417
PBXN-109	500	Go	0.3	w/HDPE Liner, Exploded	401

6°F/hr -.3/.4 50°F/hr -.266/.3 500°F/hr ->.3

PBXN-109 results

Experimental Results

Explosive	Ht Rate (°F/hr)	G/NG	Diam (in)	Reaction Notes	Rxn T (°F)
PAX-3	6	No Go	0.7	0.1" HDPE Liner, Bum off	420
PAX-3	50	Go	0.4	No HDPE Liner, Explode	392
PAX-3	50	Go	0.5	No HDPE Liner, Explode	398
PAX-3	50	Go	0.5	w/.05" HDPE Liner, Explode	374
PAX-3	50	Go	0.5	w/.1" HDPE Liner, Explode	415
PAX-3	50	Go	0.6	No HDPE Liner, Explode	396
PAX-3	50	Go	0.6	w/.1" HDPE Liner, Explode	395
PAX-3	50	No Go	0.7	w/.1" HDPE Liner, Burn Off	405
PAX-3	50	Go	0.8	No HDPE Liner, Explode	391
PAX-3	50	Go	0.8	w/.05" HDPE Liner	416
PAX-3	50	No Go	0.8	w/.1" HDPE Liner	430
PAX-3	500	Go	0.5	0.1" HDPE Liner, varied heating profile	Unkn
PAX-3	500	No Go	0.575	0.1" HDPE Liner, varied heating profile	355
PAX-3	500	Go	0.631	0.1" HDPE Liner, Explode	483
PAX-3	500	No Go	0.7	0.1" HDPE Liner, Burn Off	488

6°F/hr - <.7 50°F/hr -.6/.7 500°F/hr -.631/.7

PAX-3 results

Modeling

6 °F/hr 50 °F/hr 500 °F/hr

- Initial modeling of inert fixture to match thermal profile
- Good agreement with time and temperature at reaction
- Not such good agreement with location of reaction
- Ongoing material model development

- 1. Venting as a function of heating rate changes vary from one HE to the next
- Composition B remains flat and then decreases after a certain point
- PBXN-109 remains relatively flat
- PAX-3 remains relatively flat throughout
- Liners seem to add consistency (at least for PBXN-109)

Questions?