

Common Low-cost IM Explosive Program to Replace TNT

Joint US Army & US Marine Corps

The Characterization of IM Explosive Candidates for TNT Replacement

October 2007

Dr. Brian Roos U.S. Army Research Laboratory Attn: AMSRD-ARL-WM-TB Aberdeen Proving Ground, MD 21005 broos@arl.army.mil

- Background/Collaboration
- Small Scale Safety Tests
- > Thermal Analysis
- Performance and Shock Sensitivity
- Subscale Tests
- Initiation
- > Functioning

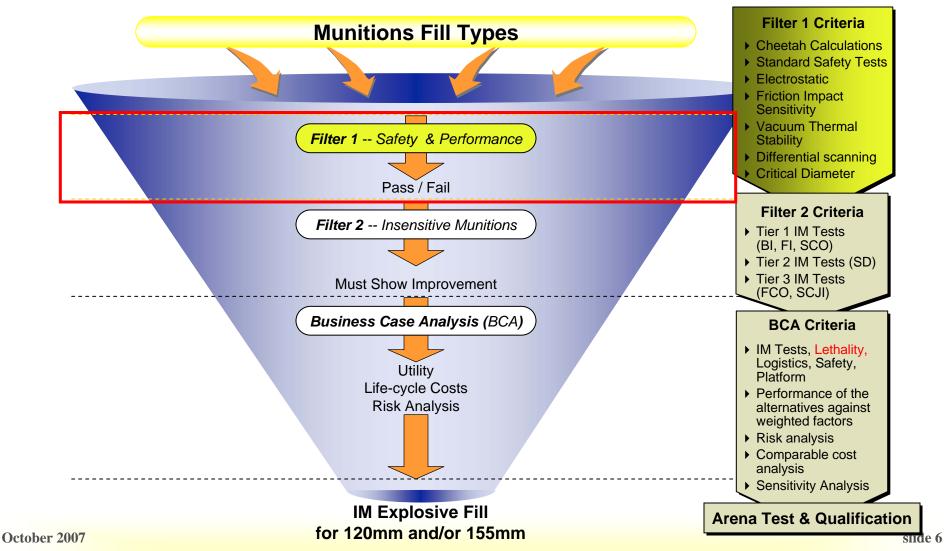
- Common Low-cost IM Explosive Program
 ✓ Previous J. Rutkowski brief in Session 7A
- > Requirements
 - ✓ Effectiveness
 - Reduced Sensitivity
 - ✓ Affordability
 - ✓ Producibility
 - ✓ Other Criteria

Collaboration

- Formulations developed by BAE-Holston, ARL, ARDEC
- Production at BAE-Holston, ARL, ARDEC
- Characterization testing at ARL, ARDEC
- Guidance from PM CAS
- Funding by PEO AMMO, PM CAS, ARDEC & ARL

Formulations

Based on Non-traditional Ingredients


Formulation	Previously Known As	Non-traditional Component	
IMX-101	OSX-CAN	DNAN, NTO	DNAN
IMX-102	MCX-8	ΝΤΟ	NTO
IMX-103	DEMN-III J	Nitrate Salt Eutectic	Eutectic

Review of Filter 1 Data for 3 Downselected Candidates

"Funnel" framework to progressively screen candidates

Small Scale Sensitivity

	Impact (cm)	Friction (N)	ESD (J)
	ERL/Bruceton	BAM	
IMX-101	> 100	242	> 0.25
IMX-102	> 100	212	> 0.25
IMX-103	> 150	122	> 0.25
RDX	25.4	110	> 0.25

All 3 IMX formulations determined to be safe for handling

Thermal Analysis

	DSC Melt Onset	DSC Decomposition	Vacuum Thermal Stability <2 cc/g
	STANAG 4515	STANAG 4515	STANAG 4556
IMX-101	94°C	228°C	Pass
IMX-102	77°C	275°C	Pass
IMX-103	99°C	235°C	Pass
TNT	77°C	300°C	Pass

Thermal analysis shows acceptable melt temperatures for existing facilities and suitable thermal stability for melt processing operations

Performance and Shock Sensitivity

	Density TMD (g/cc)	Detonation Velocity (% of TNT)	Detonation Pressure (% of TNT)	Gap Thickness ¹ (cards)	Gap Pressure ¹ (kbar)
IMX-101	1.70	100	102 ²	< 100	> 57
IMX-102	1.79	104	114 ²	< 100	> 57
IMX-103	1.66	107	122 ²	< 100	> 57
TNT	1.65	100	100	153	30
Comp B	1.74	114	140	200	21

¹ NOL LSGT, STANAG 4488

² Cheetah 3.0 Thermochemical Equilibrium Code

Testing indicates that IMX formulations meet TNT performance with reduced shock sensitivity

Subscale IM Testing

- Previously investigated IM explosive
 - Plan was to conduct Sub-scale Tests, then IM Tests followed by Performance Tests
 - Sub-scale IM test results
 - Projectile section between welded plates
 - Exhibited mild response to thermal/impact
 - » Indicated high probability of pass/success
 - IM Tests of All-Up Rounds (155mm M795)
 - FCO and BI were performed prior to other IM tests
 - Failed both FCO and multiple BI tests
 - Sub-scale results <u>did</u> not correlate completely with Full-scale Tests
 - ✓ Use of modeling and sub-scale tests require further advances or improvements to test fixtures
 - Configuration (common, correct, applicable)
 - Modeling Efforts (ongoing, but needs more time and data)

Full Scale Testing is Necessary

Initiation Tests

- Static detonation
- M795 ogive section
- Supplemental charge
- Side and bottom witness plates

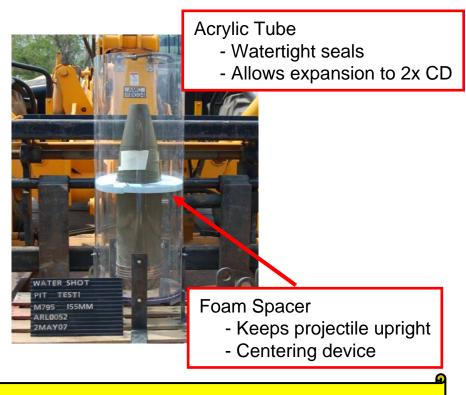
- Supplemental Charge
 - ✓ Originally pressed TNT
 - Insensitive fill require enhanced power supplemental charge
 - PBXN-9 selected for performance and IM

Initiation Results

PBXN-9 supplementary charge used to successfully initiate IMX fills

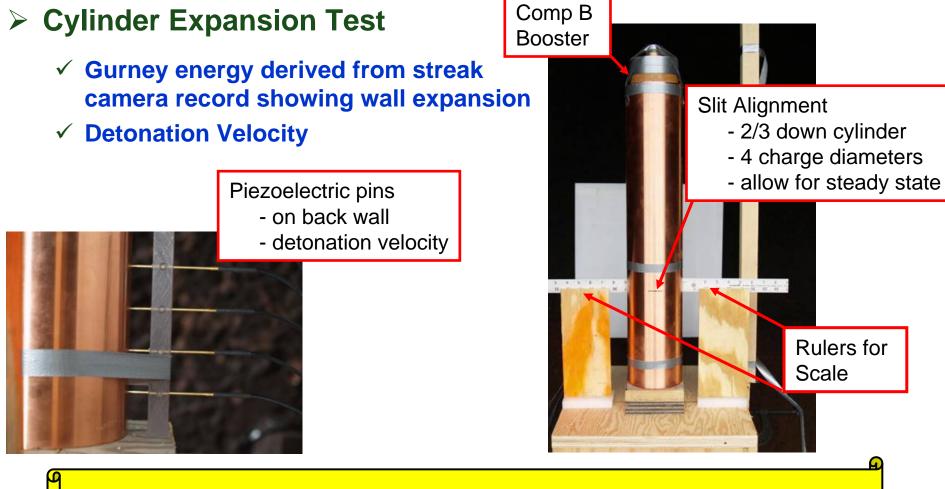
- ✓ Good quality dents on bottom witness plates
- ✓ Fragment pattern observed on side witness plates

Functioning Tests


- Fragmentation Analysis

> ARL Water Pit Test

- ✓ Static detonation of M795 projectiles with TNT and IMX fills
- ✓ Soft Recovery of Fragments
- ✓ Fragmentation Analysis



All 3 IMX fills meet or exceed TNT fragmentation performance

Additional Performance Tests - CYLEX

All 3 IMX fills match or exceed TNT Gurney energy

Summary

- Common Low-cost IM Explosive Program Jim Rutkowski, PM CAS
- > The Characterization of IM Explosive Candidates for TNT Replacement
 - $\checkmark\,$ Safe for handling and transportation
 - ✓ Performance equivalent or greater than TNT
 - ✓ Reduced sensitivity
 - ✓ Initiable and meets TNT lethality in the M795 projectile
- Manufacture of Explosive Ingredients and Compositions for the IM M795 Artillery Ammunition – Andrew Wilson, BAE Holston OSI
- The Application of New IM Explosive Candidates in the M795 Projectile – Sanjeev Singh, US Army ARDEC
- > IM HE Loading of 155 mm Projectiles Erik Boykin, US Army ARDEC

Less Sensitive and Meets Performance Requirements