

Common Low-cost IM Explosive Program to Replace TNT

Joint US Army & US Marine Corps

October 2007

Department of the Army Office of the Project Manager for Combat Ammunition Systems Attn: Mr. Jim Rutkowski Tel 973-724-2394 Fax 973-724-2048 james.rutkowski@us.army.mil Picatinny Arsenal, New Jersey 07806-5000

DoD / Industry

Common Low-cost IM Explosives

Background

Objective: Common Low-cost IM Explosive Program

- ✓ New IM Explosive for Artillery and Mortar applications that are:
 - Effective
 - Maintain Lethality with minimal or no degradation
 - Less Sensitive
 - If not fully compliant, must show improvement over Baseline explosive
 - Affordable
 - Artillery Cost Drivers = Steel Body Material & Explosive Fill
 - Mortar Cost Drivers = Steel Body Material, Fuze & Propelling Charges
 - Producible within the National Technology and Industrial Base (NTIB)
 - Infrastructure
 - Raw Ingredients
 - Explosive formulation
 - Projectile Load, Assemble & Pack (LAP)
 - Other Considerations
 - Intellectual Property Rights
 - Demilitarization
 - Environmental

Primary Objective is to provide a Common IM Fill -- or -one common TNT replacement (Artillery)... ...and one common Comp-B replacement (Mortars)

PM-CAS Common Low-cost IM Explosives Program

"Funnel" framework to progressively screen candidates

IM Test Results 155mm Artillery Baseline

Reactions: No S	VI ustained action	V Burn	IV Deflagration	III Explosion	II Partial Detonation	I Detonation
IM Test:	FCO	SCO	BI	FI	SD	SCJI
Passing Criteria	V	V	V	V	III	Ш
155mm M107 (TNT)	Ш	III	ш	ш	(I)*	(I)*
155mm M107 (Comp-B)	Ш	III	ш	I	(I)*	(I)*
155mm M795 (TNT)	III	III	IV	IV	Ι	(I)*

* Assessment (not tested)

Test Configuration

Established IM Test Configuration for TNT-Replacement

- ✓ 155mm established as test vehicle
 - M795 Projectile with HF1 Steel
 - Vented Nose Plug/Meltable Fuze Plug
 - Supplementary Charge of Pressed-TNT/PBXN-9
- ✓ Palletization
 - 8 Projectiles per Pallet, Wood (2 x 4)
 - No S.D. Barriers

Test Protocol

Established IM Test Protocol for Artillery (155mm M795)

Phase 1 Summary (Tier 1 & 2)

- ✓ Performed IM Tests
 - 23 Explosive candidates considered

CANDIDATES:	Melt-pour	Cast-cure	Press-fill
Inert Binder	2	5	1
Energetic Binder	15	-	-

- 9 candidates tested (melt-pour, cast-cure, pressed)
- Top 3 Candidates
 - All three are Melt-pour and each passed SD test without Barriers
 - » Insufficient difference to select the go forward candidate
 - Perform Tier 3 prior to entering Qualification Testing and address
 - 1) Producibility
 - 2) High Risk Areas
 - 3) Lethality Assessment

Common Low-cost IM Explosives TNT Replacement Program Lethality Assessment

Acrylic Tube

Foam Spacer

- Watertight seals

- Allows expansion to 2x CD

- Keeps projectile upright

- Centering device

Comparison to TNT

- ✓ Water Pit Tests
 - M795 projectiles loaded with IM formulations
- Cylinder Expansion Tests
 - 4" copper cylinders

All 3 formulations have fragmentation and Gurney Energy equivalent or better than TNT

TER SHO

Achievements

Qualification Program Schedule for TNT-Replacement

- Phase 1 Screening / Downselect
 - Passed SD without Barriers

Phase 2 – Selection / Qualification

- ✓ Passed RPG SCJI
- ✓ Equal or better lethality
- ✓ Producible

Phase 3 – Transition / Qualification

EMQB Certification and Gun Qualification

Summary

- Demonstrated IM Compliance
 - $\checkmark\,$ Results far exceeded expectations
 - ✓ Suitable Affordable & Sustainable solution
- Further details on this effort will be presented in the following presentations:
- Characterization
 - The Characterization of IM Explosive Candidates for TNT Replacement Brian Roos, US Army Research Lab
- Producibility
 - ✓ Manufacture of Explosive Ingredients and Compositions for the IM M795 Artillery Ammunition – Andrew Wilson, BAE Holston OSI

IM Testing

 The Application of New IM Explosive Candidates in the M795 Projectile – Sanjeev Singh, US Army ARDEC

> Projectile Filling

✓ IM HE Loading of 155 mm Projectiles – Paul Betts, US Army ARDEC

This technology saves lives, facilities & assets