

Common Low-cost IM Explosive Program to Replace TNT

Joint U S Army & U S Marine Corps

Explosive Ingredients and Compositions for the IM M795 Artillery Ammunition

NDIA IMEMTS Miami, FL 15-18 October 2007

Andrew Wilson BAE Systems Ordnance Systems Inc. Holston Army Ammunition Plant Kingsport, TN

Briefing Outline

- **>** Background and Introduction to IMX-101, -102 and -103
- Manufacturing Overview
 - ✓ Non-traditional Ingredients
 - Large Scale Manufacture
 - DNAN, NTO
 - Lab Scale Manufacture
 - Nitrate Salt Eutectic
 - ✓ Compositions
 - Large Scale Manufacture IMX-101, IMX-102
 - Lab Scale IMX-103
- Strategic Supply Capability
 - ✓ Current Capacity
 - ✓ Pricing and Availability

Background and Introduction

- > PM-CAS Common Low-cost IM Explosives Program
- > Seeking IM Explosives that are:
 - ✓ Effective
 - ✓ Less sensitive
 - ✓ Affordable
 - ✓ Producible
 - ✓ Life-cycle compliant
- Phased Evaluation Program
- Led to 3 Primary Candidates
 - ✓ IMX-101, -102 and -103
- Undergoing Qualification Testing (Phase 3)
- > Formulations & Ingredients:

> Largely composed of "non-traditional" ingredients:

Formulation	AKA	Non-traditional Ingredient(s)	
IMX-101	OSX-CAN	DNAN, NTO	DNAN
IMX-102	MCX-8	ΝΤΟ	ΝΤΟ
IMX-103	DEMN-III J	Nitrate Salt Eutectic	Eutectic

Review of Business Case of Down-selected Candidates

"Funnel" framework to progressively screen candidates

Manufacturing Producibility Non-Traditional Ingredients

- > Cost of ingredients:
 - DNAN
 - NTO
 - Nitrate salts

Strategic Synthesis Capability

- Current, active manufacturing capacity at HSAAP (as of 2007)
- Ingredients synthesized in the HSAAP Agile Plant
 - Combined DNAN/NTO capacity is ≈2-3m LB / year
 - » Using existing facilities and infrastructure

- Reported at Prior IM EM Conferences
- Established in CY2001
 - ✓ 2,000 Gallon Reactor at Heart of Facility
 - ✓ Installed in a facility <u>designed</u> to be flexible in operation
 - Rapidly reconfigurable
 - Multi-purpose chemistry capability
 - Extensive infrastructure support
 - Expandable
- Presently used for the LARGE SCALE manufacture of:
 - ✓ DNAN
 - ✓ NTO
 - ✓ DMDNB
 - ✓ Special grades of PETN, RDX
 - ✓ TATB
 - ✓ R8002 (short-term future production)

Product Collection: Nutsche De-watering

Pfaudler 2,000 Gallon Reactor

Process Control – SIEMENS PCS-7

- Batch-Manufacture
- > A Good Melt-phase Insensitive Substitute for TNT
 - ✓ A critical component of IMX-101
- > Two Synthetic Routes Demonstrated on Production Scale
- Multiple raw-material sources (U.S., international)
- Qualified in U.S. Weapon Systems
 - ✓ PAX-21 (60mm Mortar)
 - ✓ PAX-41 (SPIDER)

HSAAP DNAN – INDICATIVE PRICING

Batch Manufacture

- ✓ Synthesis based upon published route
- ✓ Modified to improve safety and productivity
- ✓ Multiple raw-ingredient sources
- Used as an insensitive RDX Replacement
 - Critical for achievement of adequate product functioning

Nitrotriazolone (NTO)

- Performance and sensitivity
- ✓ Available in various particle sizes
 - Key to achieving desired processability

slide 11

BAE SYSTEMS

HSAAP NTO – INDICATIVE PRICING

Nitrate Salt Eutectic

- Manufactured on Lab-Scale only to Date
- Elegant Salt Manufacturing Method
 - ✓ Water-based synthesis
 - ✓ Acid-base neutralization
- Robust Salt Eutectic
 - ✓ Insensitive to composition variation (+/-2% tested)

Melt-Pour Explosive Manufacture

Traditional Melt-Pour Technology

- Melt-phase ingredient (TNT, DNAN, Wax etc.)
- ✓ Fillers (RDX, NTO, etc.)
- ✓ Low-shear incorporation
- ✓ Flaking
- Quality control / assurance, final packaging
- Industrial Capacity
 - ✓ Current active capacity: 6m LB / year
 - Surge capacity >25m LB / year
- Life-cycle Management
 - ✓ IMX-101, -102 and -103 are melt-pour explosives
 - Existing Demil technology base applies to IMX products

Test Quantities of IMX-101 and IMX-102 Manufactured on <u>FULL PRODUCTION SCALE</u> at HSAAP in support of PM-CAS Common Explosive Program (1,500 LB nominal batch size)

Concluding Remarks

IMX-101, -102 and -103 Candidates for 155mm Artillery Projectile

- ✓ Contain "non-traditional" ingredients
 - NTO, and/or DNAN, or nitrate-salt eutectic
- ✓ NTO and DNAN produced on <u>full production scale</u>
- ✓ Nitrate-salt eutectic producible on same scale (not yet demonstrated)
- ✓ Raw ingredients available CONUS and OCONUS
- ✓ IMX-101 and -102 Manufactured on <u>full production scale</u>

Demonstrated IM Compliance Results far exceeded expectations Safe, Suitable & Sustainable

> ARL

- > ARDEC
- BAE Systems
- > PM-CAS
- > DZI (Kansas)
- > NTS

BAE SYSTEMS Briefing Session Summary

- Common Low-cost IM Explosive Program Jim Rutkowski, PM CAS
- The Characterization of IM Explosive Candidates for TNT Replacement
- Manufacture of Explosive Ingredients and Compositions for the IM M795 Artillery Ammunition – Andrew Wilson, BAE Holston OSI
- The Application of New IM Explosive Candidates in the M795 **Projectile – Sanjeev Singh, US Army ARDEC**
- IM HE Loading of 155 mm Projectiles Erik Boykin, US Army ARDEC

