

FMU-139B/B to AFX-795 and Tritonal Explosive Interface Comparison

Jen Duchow NAWCWD (760) 939-0250 jennifer.duchow@navy.mil

Approved for public release; distribution is unlimited.

- Interface
- LSGT
 - Tritonal
 - AFX-795
- Explosive interface comparison

- Joint Air Force/Navy program
 - Mitigate response of GP bombs to unplanned stimuli
- Air Force created AFX-795 for IM mitigation
 - Melt cast
 - RDX based
 - Drains out thermally opened vents in aft end of bomb during slow cookoff
 - Unknown explosive interface margin

Current Interface

Air Force

CH-6 booster GP bomb fuze liner 0.110 in max asphaltic hot melt Tritonal mainfill

<u>Navy</u>

PBXN-7 booster GP bomb fuze liner 0.110 in max asphaltic hot melt PBXN-109 mainfill

New Interface

Navy/Air Force

- PBXN-7 booster
- GP bomb fuze liner
- No asphaltic hot melt coating
- AFX-795 mainfill

New interface required to be as good or better than current

- Large Scale Gap Test (LSGT) from same batch of explosive in test items
- Varidrive-type comparison
 - 50% go/no-go booster density for AFX-795
 - 50% go/no-go booster density for Tritonal
 - Reduced number of tests

- AFX-795
 - Density: 1.60 g/cc (96% TMD)
 - Sensitivity: 43.7 kbar (141 cards)
- Tritonal
 - Density: 1.72 g/cc (96% TMD)
 - Very high standard deviation
 - Sensitivity: 31.8-47.5 kbar (165-128 cards)

Tritonal LSGT X-rays

Tritonal LSGT Statistical Analysis

	MU	SIGMA	-2ln(likelihood)
All Data	1.54727773	0.19133345	-13.40190464
Worse	1.65339395	0.08192435	-3.008072684
Good	1.28462571	0.06248429	-2.771213596

•Chi-square distribution with 2 degrees of freedom •Probability of rejecting H_0 , p-value, is $P(X \ge 15.245...) = 0.000489259$, where X is distributed chi-square with 2 degrees of freedom.

•Given a p-value of 0.000489259, the two groups are not from the same population. It can be assumed they come from two different populations.

Tritonal LSGT Statistical Analysis

- Production representative loads
- Conditioned to -65° F
- 3 foil switches
- 15 piezoelectric pins
- 0.75" witness plate
- Thermocouple

- Go criteria:
 - Hole in witness plate>=item diameter
 - Spall on back of witness plate
 - Terminal detonation velocity>80% known value

AFX-795					
Calculated Booster					
Density [g/cc]	Go (X)/No Go (O)				
1.17	0				
1.3	0				
1.38	0				
1.4	0				
1.41	0				
1.42	0				
1.42	0				
1.44	0				
1.45	0				
1.35	X				
1.39	X				
1.41	X				
1.44	X				
1.45	X				
1.45	X				
1.45	X				
1.48	X				
1.48	X				
1.49	X				
1.6	X				

Tritonal					
Calculated Booster					
Density [g/cc]	Go (X)/No Go (O)				
1.5	0				
1.6	0				
1.64	0				
1.67	0				
1.69	0				
1.69	0				
1.68	X				
1.69	X				

- AFX-795 50% density=1.41 g/cc
- Tritonal 50% density=1.69 g/cc
- Production density=1.76 g/cc

$$(\rho_{795T})^2 (K_{795H} / K_{795T}) \sim <= (\rho_{TriT})^2 (K_{TriH} / K_{TriT}), \text{ where }$$

 ρ_{795T} is the threshold density to initiate AFX-795 determined by these tests (1.41 g/cc) $\rho_{Tri T}$ is the threshold density to initiate Tritonal determined by these tests (1.69 g/cc) K_{795T} is the threshold sensitivity of the AFX-795 used in these tests (43.7 kbar) $K_{Tri T}$ is the threshold sensitivity of the Tritonal used in these tests (31.8-47.5 kbar) K_{795H} is the historical worst-case threshold sensitivity of the AFX-795 (43 kbar) $K_{Tri H}$ is the historical worst-case threshold sensitivity of Tritonal (57.1 kbar) AFX-795: 1.96Tritonal: 3.43 (assuming 47.5 kbar in test units)

5.13 (assuming 31.8 kbar in test units)

- PBXN-7 to PBXN-109
- CH-6 to PBXN-109
- Tetryl to PBXN-109
- GP bomb configuration
- FMU-139 interface

- LSGT showed Tritonal has a strong dependence on fill quality
- If bombs are filled with HQ Tritonal, the FMU-139 B/B appears to have insufficient design margin/reliability under worst case conditions based on test results
- Based on conservative analysis principles assuming worst case conditions the FMU-139 B/B has greater detonation transfer margin/reliability initiating AFX-795 than Tritional in the configurations tested

$$\sqrt{(x_i - x_0)^2 + (y_i - y_0)^2 + (z_i - z_0)^2 - v(t_i - t_0)} = E_i$$

where

 $x_{i,} y_{i,} z_{i}$ were the Cartesian coordinates of the ith pin, t_{i} was the arrival time measured by the ith pin, and E_{i} is an error function for the ith pin (ideally $E_{i} = 0$)

- 15 equations, 5 unknowns
- Microsoft Excel's Solver function
- Solved by minimizing the error function:

$$\mathsf{E} = (\mathsf{W}_1 \mathsf{E}_1^2 + \mathsf{W}_2 \mathsf{E}_2^2 + \dots \mathsf{W}_{15} \mathsf{E}_{15}^2) / (\mathsf{W}_1 + \mathsf{W}_2 + \dots \mathsf{W}_{15})$$

- 1) Utilizing all pins (all pins having weight factors of 1)
- 2) Ignoring the two pins closest to the detonator
- 3) Ignoring the 3 pins nearest the detonator
- 4) Ignoring the top two pins of each column
- 5) Ignoring the top and bottom pins of each column

Estimation of Detonation Velocity

		Calculated Location of Initiation Point				
		Angle				
	Booster	from			Detonation	Time of
	Density	Detonator	Radius	Height	Velocity	Initiation
Test No.	g/cc	deg.	mm	mm	mm/ $_{\mu}$ sec.	μsec.
1						
2	1.48	137 - 139	55 - 65	134 - 163	7.3 - 7.6	14 - 17
3						
4	1.49	164 - 174	61 - 80	138 - 167	7.5 - 7.9	19 - 24
5	1.6	139 - 140	57 - 61	142 - 158	7.4 - 7.6	15 - 16
6						
7	1.48	176 - 183	64 - 79	137 - 174	7.7 - 7.9	19 - 23
8						
9	1.45	144 - 150	72 - 83	155 - 164	7.2 - 7.4	18 - 20
10	1.44	148 - 229	41 - 68	184 - 282	4.0 - 6.6	17 - 28
11						
12						
13						
14	1.45	160 - 164	61 - 69	158 - 168	7.6 - 7.8	19 - 20
15	1.45	184 - 232	41	151 - 184	<u> 8.0 - 8.5</u>	30 - 33
16						
17	1.41	162 - 165	70 - 77	144 - 165	<mark>7.6 - 7.</mark> 8	22 - 24
18	1.39	160 - 164	65 - 69	156 - 164	7.5 - 7.7	22 - 23
19	1.35	197 - 203	77 - 87	133 - 161	7.9 - 8.1	24 - 27
20						

• $D_v = 7.70 \text{ mm/}\mu\text{s}$ $-.8*D_{v} = 6.16 \text{ mm/}\mu\text{s}$

- D_v for Tritonal not convergent
 - Passing based on witness plate only

