

PUMICE LAYERED WITH PROJECTILE-RESISTANT MATERIALS FOR BULLET IMPACT MITIGATION OCTOBER 2007

Jared Grover Mechanical Engineer 760-939-7131, jared.grover@navy.mil 10-17-2007

For public release; distribution is unlimited.

- Design and evaluate panels in which pumice is layered with projectile-resistant materials to quantitatively gauge the panels' ability to mitigate projectile impact threats
 - Panels to be used for protection of weapon systems during transportation within the United States

Background

- Pumice technology successfully used in current weapon system containers
 - SLAM-ER
 - JSOW
- Pumice matrix comprised of 3/8-inch-diameter pieces glued together
- Pumice binder not effective mechanism in absorbing energy
- Crushing the pumice absorbs blast energy
- New application of old pumice technology

eon

Approach:

• Identify six (6) candidate materials to be layered with pumice to mitigate specific bullet impact threats

• Design/fabricate a simple, repeatable subscale test to evaluate layered pumice test panels

Down Select:

 Choose the best performing designs and provide scaled-up panels for testing at Aerojet's facility against commercially available ballistic panels

Materials Layered w/Pumice Raytheon

Six (6) different bullet-resistant materials were layered with pumice

- Aramid Fibers-Kevlar
 - Bullet-resistant vests
- Gel Spun Polyethylene (GSP)–Dynema, Spectra
 - Automotive protection panels
- Ceramics-SiN, BC, AlO
 - Bullet trauma plates
- Steel–S-5 Tool Steel, Armor Plate
 - Industrial and military applications
- Aluminum
 - Ductile material slows velocity
- Nitinol
 - New bullet-resistant material

SENSITIV

Design Requirements and Test Instrumentation

Design Requirements:

- Identified threats
 - 7.62- x 51-mm round (.30 cal)
 - .50-cal round-specified in MIL-STD 2105
- Range-most realistic distance during logistic lifecycle
- 90-deg impact-worst-case condition
- Standard, as manufactured, projectile velocity
- Panel must stop round from penetrating shipping container

Test Instrumentation

- High-speed camera coverage
- Simulated shipping container (witness plate)
- Velocity screen
 - At muzzle, after witness plate

NAVA

R

7

Test Matrix

- Many configurations built and tested
- Nearly all configurations tested against both the .50-cal and .30-cal projectiles

	Kevlar and		Tool Steel		Gel Spun Polyethylene		Aluminum		Ceramics		Nitnol and		Armor Plate and
	Pumice		and Pumice		and pumice		and Pumice		and Pumice		Pumice		Pumice
KEV1 KEV2	Kevlar		Aluminum		GSP		Aluminum		BC Ceramic		Aluminum	AP2+*	Armor Plate
	Steel	TS1	Kevlar		Steel		Aluminum	1	Pumice		Nitnol		Pumice
	Pumice		Pumice	GSP1+	Pumice		Pumice	CED1	Kevlar	NI1	Pumice		Aluminum
	Aluminum		Tool Steel		Aluminum		Aluminum	CERI+	Aluminum		Kevlar		Armor Plate
	Kevlar		Pumice		GSP	47.1	Pumice		Kevlar	NI2	Aluminum	AP3*	Armor Plate
	Pumice		Kevlar		GSP	ALI	Aluminum		Steel		Aluminum		Pumice
	Kevlar		Pumice		GSP		Pumice		BC Ceramic		Nitnol		Armor Plate
	Pumice		Aluminum		GSP		Aluminum		Pumice		Pumice		Pumice
	Kevlar		Aluminum		GSP		Pumice		BC Ceramic		Nitnol		Kevlar
	Aluminum	TS2	Kevlar	GSP2+	Pumice		Aluminum		Pumice		Pumice		Aluminum
	Kevlar		Pumice		Aluminum		Aluminum		Aluminum		Aluminum		
KEV3	Pumice		Tool Steel		GSP		Aluminum		BC Ceramic	NI3	Aluminum		
KEV3	Kevlar		Pumice		GSP		Pumice	CER3	Pumice		Nitnol		
	Pumice		Aluminum		Pumice		Aluminum		Aluminum		Pumice		
	Aluminum		Aluminum	CSP3*	Aluminum	AT 2	Pumice		Aluminum		Nitnol		
	Aluminum		Tool Steel	0515	GSP	AL2	Aluminum	CER4	BC Ceramic		Pumice		
	Kevlar		Pumice		Pumice		Pumice		Pumice		Nitnol		
	Pumice		Tool Steel		Aluminum		Aluminum		BC Ceramic		Aluminum		
	Kevlar	TS 3	Pumice		GSP		Pumice		Pumice				
KEV4	Pumice	155	Tool Steel	GSP4	Pumice		Aluminum		Kevlar				
11214	Kevlar		Pumice	0014	Aluminum		Aluminum		Pumice				
	Pumice		Tool Steel		Pumice		Aluminum		Aluminum				
	Kevlar		Pumice	H2O	Aluminum	AL3	Pumice	CER5	Aluminum				
	Pumice	TS4	Aluminum		Water		Aluminum		SiN Spheres				
	Aluminum		Aluminum		Aluminum		Pumice		SiN Spheres				
	Aluminum		Pumice		Pumice		Aluminum		SiN Spheres				
	Pumice		Tool Steel		Aluminum		Aluminum		SiN Spheres				
	Kevlar		Pumice		Kevlar	AL4	Aluminum		Pumice				
	Aluminum		Tool Steel		Aluminum		Pumice	CER6	Aluminum				
	Kevlar		Pumice	BASE3B	Pumice		Aluminum		Aluminum				
	Aluminum		Aluminum		M ild steel		Pumice		Pumice				
DONIGAN	Pumice	TS 5*	Aluminum	BASE3	Aluminum		Aluminum		AlO Rods				
BONUS 1*	Kevlar		Tool Steel		Aluminum	DIGE	Aluminum		AlO Rods				
	Aluminum		Pumice Track Start		Pumice	BAS EI	Pumice		AIO Rods				
	Pumice		Tool Steel		Aluminum		Aluminum		Pumice				
	Kevlar		Pumice				Aluminum		Aluminum				
	Aluminum		Kevlar				Pumice						
	Pumice		Aluminum				Aluminum						
	Kevlar		Aluminum				Pumice						
	Aluminum	TS 6*	I ool Steel	 			Aluminum						
KevBonus	Auminum		Tool Starl			AT 4	A humic						
	r umice Steel		1 001 Steel			ALO	Auminum						
	Steel Kaalaa		r umice K aadaa				r umice						
	Aluminum		Aluminum				Pumice						
	Dumico		, siunniuni				Aluminum						
	r utilice Steel						Pumice						
	Keylar				* 50 cal only		Aluminum						
	1xcviai						, statinituiti						

.50-cal Test Data

•Target success not dependent on bulk density

•Four successful panel designs

	order	Round Used	(Y/N) ?	Target Bulk Density,lb/ft ³	Comments	
AL1	7	.50 cal	yes	60.3		
AL2	3	.50 cal	yes	70.2	Exit velocity screen captured debris velocity	
AL3	9	.50 cal	yes	66.4		
AL4	8	.50 cal	yes	73.2	No video	
AL6	6	.50 cal	yes	53.5	Switched to 2 exit velocity screens	
AP2+	35	.50 cal	no	201.3	Added .5" AP in front AP2	
AP3	33	.50 cal	yes	131.8	Back half bullet stopped front half penetrated witness plate	
BASE1	2	.50 cal	yes	49.6		
BASE3	1	.50 cal	yes	83.1	Bullet tumbled, exited sideways	
BASE3B	32	.50 cal	no	97.9	Bullet tumbled, hit steel plate sideways, deflected up and away from witness plate	
BONUS1	4	.50 cal	yes	N/A		
CER1+	29	.50 cal	yes	59.6		
CER2	25	.50 cal	yes	56.7		
CER3	26	.50 cal	yes	56.9		
CER4	23	.50 cal	no	56.0	Yes target, no witness plate, camera velocity of debris	
CER5	31	.50 cal	yes	61.2		
CER6	21	.50 cal	yes	80.2		
GSP1+	36	.50 cal	yes	51.4	No velocities, instrumentation error	
GSP2+	34	.50 cal	yes	46.7	Round deflected, didn't enter second velocity screen	
GSP3	22	.50 cal	yes	48.4		
GSP4	21	.50 cal	yes	45.0	Spectra- GSP	
H2O	30	.50 cal	yes	N/A		
KEV1	19	.50 cal	yes	77.6		
KEV2	20	.50 cal	yes	50.2		
KEV3	12	.50 cal	yes	53.5	Started using foil switches	
KEV4	13	.50 cal	yes	50.6		
KEVBONUS	28	.50 cal	yes	N/A	Round deflected off stand on exit, exit velocity is suspect incorrect	
NI1	10	.50 cal	yes	60.2	Removed all exit screens	
NI2	11	.50 cal	yes	63.2		
NI3	27	.50 cal	yes	81.6		
TS1	14	.50 cal	yes	60.4		
TS 2	18	.50 cal	yes	60.5		
TS3	5	.50 cal	yes	85.5		
TS4	17	.50 cal	yes	80.4	Barely thru witness plate	
TS5	16	.50 cal	no	76.1	Yes target, no witness plate, camera velocity of debris	
TS6	15	.50 cal	no	143.1		

Ray

heon

TS5 Testing

- Target TS5: Tool Steel
 - .50-cal projectile
 - 24000 frames/second
 - Target bulk density: 76.1 lb/ft³

Aluminum

TS6 Testing

- Target TS6: Tool Steel
 - .50-cal projectile
 - 24000 frames/second
 - Target bulk density: 143.1 lb/ft³

Collaborative work performed under NCRADA-NAWCWDCL-06-149 between Raytheon Missile Systems and NAWCWD

CER4 Testing

- Target CER4: Ceramic
 - .50-cal projectile
 - 24000 frames/second
 - Target bulk density: 55.95 lb/ft³

AP2+ Testing

- .50-cal projectile
- 24000 frames/second
- Target bulk density: 201.3 lb/ft³

Ra

heon

.30-cal Testing

- Performed in case a panel capable of stopping the .50-cal round is too heavy
- Verified all panels successful with .50 cal could stop the .30-cal round also
- Select other panels could stop the .30-cal round but not the .50-cal round

	Tested	Round	Target Bulk	Penetration	
Target ID	order	used	Denisty (lb/ft ³)	(Y/N)	Comments
AL1	28	.30 cal	60.3	Yes	
AL2	13	.30 cal	70.2	Yes	
AL3	22	.30 cal	66.4	Yes	
AL4	14	.30 cal	73.2	Yes	
AL6	21	.30 cal	53.5	Yes	
BASE1	12	.30 cal	49.6	Deflected	Deflected right of witness plate
BASE3	23	.30 cal	83.1	Deflected	Deflected down into test stand
BASE3B	24	.30 cal	97.9	Deflected	Deflected right of witness plate
CER1	10	.30 cal	59.6	No	Penetrated target, not the witness plate
CER2	9	.30 cal	56.7	No	Projectile stuck in target
CER3	8	.30 cal	56.9	No	Projectile stuck in target
CER4	7	.30 cal	56.0	No	Projectile stuck in target
CER5	25	.30 cal	61.2	No	Projectile stuck in target
CER6	11	.30 cal	80.2	No	Projectile stuck in target
GSP1	4	.30 cal	51.4	Yes	
GSP2	5	.30 cal	46.7	Deflected	Deflected down into test stand
GSP4	3	.30 cal	45.0	Deflected	
KEV1	1	.30 cal	77.6	Yes	
KEV2	2	.30 cal	50.2	Deflected	Deflected up above witness plate
KEV3	19	.30 cal	53.5	Yes	
KEV4	20	.30 cal	50.6	Deflected	Deflected right of witness plate
NI1	27	.30 cal	60.2	Yes	Deflected up above witness plate
NI2	26	.30 cal	63.2	Deflected	Deflected down into test stand
NI3	6	.30 cal	81.6	Deflected	Deflected down into test stand
TS1	18	.30 cal	60.4	Yes	
TS2	16	.30 cal	60.5	No	Projectile stuck in target
TS3	17	.30 cal	85.5	No	Projectile stuck in target
TS4	15	.30 cal	80.4	No	Projectile stuck in target

NAV

Verification Testing

Twenty-two (22) panels scaled up to 12" x 12" and provided for verification testing

- Only eight (8) panels tested due to time constraints

• Final testing performed at Aerojet's Camden facility

- Test range shortened to maximize impact velocity
- Impact angle remained 90 degrees
- As-manufactured ammunition provided from same lot as previous testing
- CER7 and TS5.5 considered best performers

CER7 Verification Testing

 CER7–based on CER4 design but using less expensive alumina ceramic tiles

Raytheon

Aluminum Tool Steel Kevlar Pumice Tool Steel Pumice Kevlar Aluminum

TS5.5 Verification Testing

 TS5.5-built to split difference in tool steel thickness between the TS5 and TS6 panels

Raytheon

Future Plans/Conclusion

• Optimize CER7 and TS5.5 Panel Designs

- Characterize impact-resistant material (tool steel/ceramic)
- Characterize shock absorption materials (pumice)
- Optimize/reduce panel weight-21-32%
- Reduce panel depth-26-57%
- Validation of optimized panel designs
- Layered pumice panels provide a viable solution to protecting weapon systems from the .50-cal projectile during transportation cycles

Backup Slides

Raytheon

Collaborative work performed under NCRADA-NAWCWDCL-06-149 between Raytheon Missile Systems and NAWCWD

Typical Panel Failure

Target AL2

- .50-cal projectile

- 8000 frames/second

Rayt

heon

 Target bulk density: 70.18 lb/ft³

More TS6 Pictures

•First steel plate shattered and blew out front of target after round ricocheted off second steel plate

Witness Plates

- •Witness plate simulates the shipping container wall
- •If rounds penetrated the witness plate, panels are considered a failure

Raytheon