

Agent Fate Study Update

Presented at

The 2007 Joint Service Chemical and Biological Decontamination Conference

24 October 2007

Dr. James Savage
JSTO-CBT-TAS Thrust Area Manager for Agent Fate
410-436-2429, james.savage@us.army.mil

What is the Objective of the Agent Fate Program?

Improve model predictions of agent persistence

Objectives:

- Measure and understand the agent/substrate interactions
- Develop predictive algorithm module

Payoffs:

- Support all capability areas: detection, protection, decontamination
- Augments operational and mission area analysis tools
 Joint Effects Model (JEM)
 Joint Operational Effects Federation (JOEF)
- Direct feed to Low Level Toxicology DTO (CB.51)

Providing Relevant Products To The Warfighter

Improved HD Contact Hazard Persistence Estimates

Table 1-4. Chemical agent persistency in hours on chemical agent resistant coated painted surfaces.									
Temperature		Agents							
C°	F°	GA/GF ¹	GB2, 3	GD2, 3	HD1	VX 2, 3			
-30	-22	,	110.34	436.69	•••	•••			
-20	-4	•	45.26	145.63	••	•••			
-10	14	•	20.09	54.11	**	***			
0	32	•	9.44	22.07	••	•••			
10	50	1.42	4.70	9.78	12	1776			
20	68	0.71	2.45	4.64	6.33	634			
30	86	0.33	1.35	2.36	2.8	241			
40	104	0.25	0.76	1.25	2	102			
50	122	0.25	0.44	0.70	1	44			
55	121	0.25	0.24	0 E1	1	25			

NOTES:

- 1 For grassy terrain, multiply the number in the chart by 0.4.
- 2 For grassy terrain, multiply the number in the chart by 1.75.
- 3 For sandy terrain, multiply the number in the chart by 4.5.
- * Agent persistency time is more than 1.42.
- ** Agent is in a frozen state and will not evaporate or decay.
- * * Agent persistency time exceeds 2,000 hours.

F	М	3-	.4

(Preliminary - HD on Sand) Based on Agent Fate DTO Data

Temp	2-m Heig	2-m Height Windspeed (m/s)					
(°C)	0.5	3.0	6.0				
15	>17	>17	>17				
35	6	4	4				
50	3	2	<1				

Surface	GA	GB Sarin	CD Soman	GF Cyclosarin	HD Distilled Mustard	R-33 (Russian VX Isomer	ΛΧ
Concrete	0	0	0-0.5	0*	0	0-*	0-0.1
Asphalt	0	0	0*	0*	0=	0*	0-0.9
Grass	0	0	0*	0±	0-0.2	0*	0-33
Sand	0	0	0*	0*	0=	0*	0-0.5
Sandy Loam	0	0	0*	0*	0=	0*	0-1
Bare Ground	0	0	0*	0±	0-0.1	0*	0-1
Tar and Chip	0	0	0*	0*	0*	0*	0±
AC Topcoat	0	0	0*	0*	0-0.3	0*	0-14
CARC Paint	0	0	0*	0±	0	0*	0±
Alkyd	0	0	0*	0=	0	0*	0-1
Polyurethane	0	0	0*	0=	0	0*	0*
Glass	0	0	0-3	0±	4	0*	0÷
Bare Metal	0	0	0-3	0=	0-0.8	0*	0*
Wood	0	0	0*	0=	41-	0*	0-1
Snow	0	0	0*	0±	0±	0*	0
Ice	0	0	0*	0*	0*	0*	0*

(HD on Impermeable Surface) Based on Agent Fate DTO Data

Temp	2-m Heig	2-m Height Windspeed (m/s)				
(°C)	0.5	3.0	6.0			
15	24	7	6			
35	4	1	1			
50	11	0.5	0.5			

Environmental Fate of Chemical Agents

Purpose & Goal – To enhance predictive tools with high-fidelity data, quantifying the fate of chemical agents within operationally significant climates and surfaces.

Wind Tunnel Testing

Measures evaporation of agent from surface at realistic climactic conditions. Main data input stream for predictive models

Uses combinations of vapor sampling & gravimetric analysis

Agent/Substrate Interactions

Agent/Substrate interactions are critical component to determinations of fate.

Studies use highest fidelity methods including NMR, SPME, vapor resurgence, extractions quantitative imaging and fundamental property measurements

Outdoor Testing

Validates model developed with wind tunnels data

Provides "ground truth" of behavior in environment

Modeling

Improves hazard prediction tool accuracy

Transitions information to warfighter in a usable format

4

International Partners: CZ, POL, NLD, UK, and SGP

Design of Experiments Minimizes the Number of Experiments

- About 10,000 experiments for full factorial approach – infeasible!
- Now, about 1500 experiments with CCD approach
 - 24 agent/substrate combinations
 - 3 levels for each parameter (temp., drop size, wind speed, humidity)
- Created central composite design (CCD) experimental test matrix
- Developed surface evaporation assessment tool
- Incorporated 26,115 new data elements into evaporation database

HD on Concrete CCD Experiments

Imaging Systems Display Agent / Substrate Interactions

Imaging techniques quantify agent penetration into porous media

Displacement of GD by Rainfall: Sand vs. Montmorillonite Clay

<0.002 mm

Substantially greater GD Displacement-Peaks from Clay than Sand

0.8 - 1.2 mm

- Substantially greater Total amount of GD displaced (~30x) from Clay than Sand
- Clay soil material retained displaceable-GD appreciably longer than Sand

NMR Results: Degradation of HD

Limestone: No reaction in 19 months

Asphalt: No reaction in 13 months

Sand: No reaction in 12 months

Mortars: Half-lives of weeks to years.

Concrete: Half-lives of weeks to years.

The initial degradation products on concrete were toxic sulfonium ions. These degraded to non-toxic products over a period of months to years.

Decomposition was faster on wet substrates

Interaction of VX with the Components of Concrete

Purpose:

To Determine which of the Components of Concrete is Primarily Responsible for the Hydrolytic Decomposition of VX

Conclusions:

The active component is the Mortar, Portland Cement

 $CaO + CO_2 = CaCO_3$

- The active chemical component is Calcium Oxide
- Calcium Carbonate is ineffective in decomposing VX
- Surface Calcium Oxide is converted to Calcium Carbonate during aging

Summary:

- The experiments identify the important concrete ingredient in the decomposition of VX to be the Calcium Oxide in the Portland Cement
- Concrete is an example of a porous, reactive substrate of interest
- Further experiments continue to aid in our understanding of secondary vaporization

	New	Old
рН	12	8
VX	reacts faster	reacts slower
Mustard	reacts faster	reacts slower
Mustard	forms vinyl	no vinyl
Ca Species	oxide	carbonate

VX on Concrete Monoliths

- Initial reaction in the first monolayer of VX, followed by a slower, secondary reaction
- If the VX is diluted in hexane it reacts faster
- Smaller droplets react faster
- VX degrades faster on more basic (newer) concrete

TGA Evaporation Experiments

Range of Wind Tunnel Sizes Used in Agent Fate

5 x 5-cm Wind Tunnel Operational Arrangement

Variable Tube Sampler (VTS) x2

HYFED

Agent/Substrate Sample

Control System Computer

ECBC Lab Wind Tunnel Results

Concentration vs Time

6 μL Drop Size, 35 °C, 3 m/s Wind Speed at 2 m, ~0% Relative Humidity

Preliminary Persistence Estimates HD on Concrete / Sand Vapor Hazard

Preliminary comparisons of evaporation from operationally relevant substrates

Comparison of HD Evaporation Model Predictions To Experimental Data

Agent Fate Product

Release: 6/20/2007

Agent Fate Database

Version: 2:2:1

- Data pages
- **Data Matrix Reporting**
- Open List query based chart builder
- Open Excel List builder
- Open List based results query builder
- Open Navigable results query builder
- Open Table based results query builder
- Import Data Sheets

As of Sept 2007

- 364 datasheets
- Agents
 - HD, GD, VX
- Substrates
 - Asphalt
 - Concrete
 - Glass
 - UK Sand
 - Stainless Steel

GENERAL DYNAMICS

Information Technology

VX Contact Hazard Estimates

Ungloved, 2-Hand Touch Percutaneous Liquid Contact Hazard (Severe ED₅₀ Effects)

Based on VX data on an Impermeable Surface from Agent Fate DTO

Surface Temperature (°C)	Full Transfer	Partial Transfer*
35	2770	1520
42	1470	740
50	990	570

Time (min)

1 g/m² deposition 90% agent purity (900 mg/m² agent deposition) Mono-dispersed 6-uL drops (~ 2.3mm spherical drop diameter)

^{*} Partial Transfer = 50% transfer from surface to hand, 25% transfer through skin

From Data to Operational Utility

Summary

- Environmental Fate of Chemical Agents DTO CB.42 successfully completed in 2006 ECBC-TR-532
- CWA evaporation and reaction kinetics data delivered to modelers to improve hazard prediction estimates
 - Updated AFMAN 10-2602; TTP's; VLSTRACK;
 CHEMRAT
- Data being processed to deliver secondary evaporation model to JEM 3rd quarter FY08 under TTA IS12
- Future work: Thickened Agents on operational substrates

What is the source term?

- The source term is defined as follows:
 - (a) amount of agent deposited on the surface
 - (b) amount of agent evaporated
 - - (c) amount of agent that 'irreversibly' binds to substrate
 - (d) amount of agent that reacts with the substrate
 - + (e) amount of agent that diffuses back to the surface

Need to Determine Scope of Agent/ Substrate Interactions

Royal Saudi Air Base

Torrispsamments Plain soil type represents 3 different sites

Agent Fate Database

Agent Fate Database

Tunnel:	3K			
Date:	October 16, 2006			
Experiment Number:	38			
File Name:	20061016 3k 038			
Later 1 villages	20001010_3K_030		-	
Substra	te			
ype of substrate :	Glass			
substrate sample size (mm):	36.6	0.00105	m²	
Agent				
est agent:	VX CASARM			
agent grade::	CASARM			
agent purity:	91.0%	Date/Chem:	KS	12/21/2006
actual density:	1.01	mg/uL		
Contamina	ation			
number of drops:	1			
nominal drop volume:	6	μL		
actual calculated drop volume:	6.000			
weight of clean substrate:	0.000			
weight of contaminated substrate:	0.000	Control Control		
mass of agent disseminated:	6.060	mg		
corrected mass on 100% agent purity:	5.515			
actual contamination density:		g/m²		
actual contamination density based on 100% agent purity:	5.24	g/m²		
Control Para				
Willer Nelson temperature:	0.0	°C	0.0	
air flow temperature:	41.7	°C	0.3	
Aalborg Flowmeter air flow rate:	181.64	SLPM	1.1	
ransition section wall temperature:	41.9	°C	0.4	
etch section wall temperature:	42.3	°C	0.6	
substrate temperature:	42.0	°C	0.4	
piston zone temperature:	42.7	°C	0.5	
post-test section wall temperature:	45.1	°C	0.3	
nixing box wall temperature:	50.1		0.4	
sampling duct wall temperature:	50.0	°C	0.1	
est section air flow speed:	1.64	m/s	0.0	
air flow relative humidity:	0.00	%	0.0	
Sampling Par	ameters			
sampling technique:	VTS#06			
ntroduction technique:	UNITY/ULTRA			

Summary I	Data Sheet -	Wind Tu	nnel Exper	ıment			
Test Facility: Date of Experiment (mm/dd/yy): Wind Tunnel Descriptor: Original Data File Name:	71		11	20061	016 3k 0	38(0 0 0 <u>a</u>	ECB(10/16/0 31 2)VX (
Substrate		Glass			Evapor	ation Data	ŭ.
substrate code:		G001		Data	*Elapsed	GC Tube	Vapor
Agent		VX		Point	Time	Conc.	Collecte
agent type (neat/thickened):		CASARM		#	min	mg/m3	mq
agent purity - weight %:		91.00%		0	0.00	0.0000	0.000
density of pure agent - mg/µL:		1.01		10	5.82	0.0075	0.004
nominal density of test agent - mg/μL:		nd		2	75.87	0.0184	0.168
targeted drop volume - μL:		6.00		3.	145.92	0.0166	0.39
actual drop volume - μL:		nd		4	215.97	0.0134	0.582
targeted drop mass - mg:		6.060		5	346.02	0.0151	0.919
actual drop mass - mg:		nd		6	476.07	0.0154	1,279
number of drops disseminated:		1		7	606.10	0.0149	1,637
total mass disseminated - mg:		6.060		8	736.15	0.0122	1,956
total mass of agent disseminated (corrected for purity)	- mg:	5.515		9	866.20	0.0118	2.239
Experimental Variables	Targeted	Actual (Av	g/StdDev)	10	996.25	0.0117	2.517
air flow temperature - "C:	35	41.7	0.323	11	1126.30	0.0052	2.717
substrate temperature - °C:	35	42.0	0.354	12	1256,35	0.0081	2.874
air flow relative humidity - %:	0	0.00	0.000	13	1326,40	0.0066	2.968
air flow speed above drop - m/s:	1.77	1,64	0.013	14	1396.45	0.0060	3.048
air flow speed measurement height - cm:	1			15	1466.50	0.0043	3.113
enter theoretical air flow speed at 2 m height - m/s:	3.250	3.033		16	1536.55	0.0050	3.172
Evaporation Measurement Technique	Va	por Collecti	ion	17	1606.60	0.0017	3.21
reference code for experimental method;	E	CBC X-SOP v.	06	18	1676,65	0.0006	3,229
Vapor Collection Data				19	1746.70	0.0000	3,233
total mass of agent vapor collected - mg:		3.233		20	1816,75	0.0000	3.233
Gravimetric Data (not provided by ECBC)				21	1886,80	0.0000	3.233
initial:weight of uncontaminated test substrate - g:		nd		22	1956,85	0.0000	3.233
weight of contaminated test substrate - g:		nd		23	2091,90	0.0000	3,233
initial mass of agent deposited on test substrate - mg:		nd		24	2231.95	0.0000	3,233
				25	2428.67	0.0000	3.233
initial weight of uncontaminated test substrate - g:		nd		26	2635,38	0.0000	3,233
weight of test substrate after evaporation - g		nd		27	2842.10	0.0000	3.233
résidual mass of agent in test substrate after evaporati	on-mg	0.000		28	3142.15	0.0000	3.233
			inistration in	29	3452.20	0.0000	3.233