Battlefield Power for the Warfighter Lessons for the Development Community Ken Zemach, Ph.D. Lion Cells, Inc. April 2007 SF soldiers in theater ripping apart dozens of MBITR boxes to run them from BA-5590s Actual operational power supply rigged by soldiers to run \$500,000 thermal sight in theater #### **BLUF** 2 years of developing, deploying, and supporting technology in OIF and OEF - 20% of successful technology deployment is the technology... 80% is logistics (materials, repair, training, support) - Power is a large part of the logistics nightmare for many items... avoid proprietary solutions whenever possible ### **Proprietary Batteries: Resupply/Charge** Cooling Vest for Mounted Operations Viable technology solution but used proprietary battery: - Field use impared by battery choice - Reduced value for Warfighter, military, manufacturer #### **Correct solution:** - BB-2557 and/or BB-2590 - More utility, lower initial cost, lower long term cost, countless substitutes ### **Proprietary Batteries: Logistics** **ECM Device for Critical Application** ### **Proprietary Batteries: Support** Total Time ~ Six Weeks to support due to proprietary power system UAV uses standard mil batteries, HMMWV, and/or other sources to run both OCU and recharge lightweight aircraft batteries... best that could be done Both these robots run directly off of BB-390/2590 standard military batteries, saving battery and charger logistical nightmares. Unique split-body robot for rough terrain under vehicle inspection uses military standard BB-2847 batteries and military standard chargers. Run anything COTS from an x90 #### COTS: - Cell phones - Sat phones - PDAs - AA chargers - Laptops - Camcorders - DVRs - LCD monitors - Surveillance cameras - Loudspeakers - Spotlights - Dremel tool - Etc. ### LRAS3: Developed for Mounted Units No AC power supply was ever envisioned to be required in the initial fielding.... ### LRAS3: Developed for Mounted Units ...so soldiers were hacking together field expedient solutions. Left: HMMWV taken off line to run sight. Right: field rigged power supply. This is not the way! # Two proposed solution approaches for the LRAS3... Question: which approach is right? #### **NEITHER** #### COTS Approach - UK marine manufacturer - \$2,700 each - 1 month lead time #### Military Solution - US military manufacturer - 9 -12 month lead time - \$250k NRE - \$5k+ each - Meets strict equipment specs #### SSG D.W. of the 1/506th INF REGT wins with: #### Moving to a "standard" 24V Power Supply: - Saved 9+ months of R&D - Saved over \$250k in NRE for development - Saved over \$800k in power supply costs - Avoided logistics/support issues for new custom equipment # **Solar Battery Charging + UPS** Problem: what's the best way to power long term, remote sensors in theater? - Lots of BA-5590s in parallel - Several BA-8180s (Zn-Air) in parallel - Solar UPS... Yes! (self operating, etc); modified military standard SP-4 to get there easily #### **Product Design and Fielding Issues** Why manufacturers should standardize and/or have the right adapters - It CAN be done, and it's not that hard. - Examples: MARCbot, ODIS, Raven, LRAS3 - For manufacturers: - Reduces time to market, battlefield - Increases military acceptance - ? Reduces product cost ? - For Military: - Increases standardization (a good thing) - Reduces logistics and support issues (<u>HUGE</u>) - Manufacturers (military and consumer) need: - Directive AND understanding why - Help with how: recommended options, dimensions, sources, connectors, DC-DC converters, suppliers, etc. Most power problems encountered in theater are <u>OUR FAULT</u> (incompatible / proprietary batteries, connectors, cables, etc), <u>not</u> because of the operational scenario. #### **Contact Info** Ken Zemach Email: kzemach@alum.mit.edu Useful Website: www.warfightersolutions.com