

# MILSATCOM Briefing National Defense Industrial Association (NDIA) 17 April 2007

Brig Gen Ellen Pawlikowski, Commander MILSATCOM Systems Wing





# Transformational Satellite Communications System (TSAT) Description

- Transforms satellite communications (SATCOM)
  - Extends DoD ground-based Global Information Grid (GIG) network to deployed and mobile users
    - Implements worldwide networking based on Internet Protocol
    - Laser communications (huge capacity gains)
- Enables service warfighting visions:
  - Mobile battle command on the move
    - Current systems force comm-on-the-pause, or -stop
  - Shared situational awareness
    - Red/blue force tracking; real-time intel
    - Complete sensor-to-shooter (through C2) capability
  - Collaborative, offensive-oriented planning
    - Enables dynamic/high-tempo operations
  - Provides assured command & control to strategic forces
  - Linchpin for 21<sup>st</sup> century net-centric warfare
    - Communicate as a joint networked force





# Military Satellite Communications

1960 - 2015



Continuous Capacity and Protection Improvements: Being Responsive to our Warfighter Needs

### Evolution of Onboard Signal Processing for Protection and Connectivity

 $Highly\ Robust \rightarrow Wide\ Bandwidth \rightarrow Efficient$ 



3 orders of magnitude capacity increase



# TSAT Critical Technologies

- Battle Command On the Move (BCOTM)
- Next Generation Processor/Router



Bandwidth Efficient Modulation



• Dynamic Bandwidth Resource Allocation



Transec

COVER

Frequency Hopping 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

STRAT Tactical

16 independent uplink cover keys per satellite

Two independent uplink patterns per satellite

Space HAIPE



#### Lasercom







### TSAT Definition of Technology Maturity/Readiness



Multiple activities used to establish tech readiness



### TSAT Technology Readiness Level (TRL)



HAIPE: High Assurance Internet Protocol Encryption

ISSDR: Interim Space Segment Design Review OSVS: Optical Standards Validation Suite NGPR: Next Generation Processor Router

Key technologies will be demonstrated to TRL-6 by KDP-B



### Maturation Example: Lasercom

### **Heritage**



LITE-2 EM (Fiber-Based) 1990's

#### Introduction of commercial parts

 Leverage largescale manufacturing processes

### **Flight Experiments**



Lasercom Experiment (GeoLITE, 2001)



Airborne Laser Experiment Alex Demonstration (2002)

2001/2

### **Breadboard**





### **Parts Prequal**

Kev components/subassemblies

- Optical fiber
- **Optical & RF Filters**
- Optical & RF Modulators/Demodulators
- Diode transmitters/receivers
- **Optical switches**
- Interferometers
- Couplers/isolators

Vendor development and major Environment Testing (examples)

- Failure modes and Effects **Analysis (FMEA)**
- Thermal temperature cycling
- Vacuum
- Vibration
- **Mechanical Shock**
- **Total Dose** 
  - Prompt Dose /SEU

### **Brassboard**



8

2006 2007

Pre 2000

2005



## Independent Validation

- Independent test assets
  - Network, RF, Optical, and High-Speed Electronics Test Systems
  - Operate stand-alone or as part of integrated infrastructure
- Government test team
- Government assessment of functionality/performance



Independent test capability for Government technology performance assessment



### Next Steps in Technology Maturation



Higher risk integration prior to SS ATP, lower risk afterward



# **Back Up**

12



- MILSATCOM history
  - Continual expansion by leveraging the latest technology
- Space systems development
  - Need to balance technology risk versus performance
  - Disciplined technology maturation is essential
- Transformational communications success hinges on successful technology maturation
  - Technology demonstration on track to TRL-6
  - More maturity and integration planned for the future



# TSAT System

13





# LCT-2 Free Space Communications Testing Complete: Feb 07



Independent testing of LM-NGST and BSS terminals accomplished on schedule



# NGPR-2 Bandwidth Efficient Modulation (BEM) Testing Complete: Feb 07



 Four new TSAT modulation / coding pairs for XDR+ provide more throughput in fixed bandwidth

Downlink rates up to 311 Mbps

- Enable power efficiency and interference protection
- Allow multiple users to share a single band

Testing Network communications with TSAT XDR+ uplink/downlink waveform



### WGS vs. AEHF vs. TSAT

|   |                         | WGS<br>Per Satellite      | AEHF<br>Per Satellite             | TSAT Per Satellite           |
|---|-------------------------|---------------------------|-----------------------------------|------------------------------|
|   | BCOTM*<br>1' Antenna    |                           | COTP140 links @ 32 Kbps  256 Kbps | 300 links***<br>@ 1544 Kbps  |
| 7 | AISR<br>High Resolution | 2 links<br>@ 274 Mbps     |                                   | 6 links<br>@ 311 Mbps        |
| 1 | AISR<br>Hyperspectral   |                           |                                   | 6 links@2448 Mbps**          |
|   | Space Based ISR         |                           |                                   | Up to<br>10 Gbps             |
| - | Connectivity            | Pt to Pt<br>to multipoint | Pt to Pt<br>to multipoint         | Full mesh—anyone to everyone |
| 7 | Strategic               | <b></b>                   | Yes                               | Yes                          |

<sup>\*</sup> Battle Command on-the-Move (BCOTM) includes network core services, such as Voice, VTC, Broadcast Imagery, Web-based Traffic

<sup>\*</sup> Overall constellation available laser links

<sup>\*\*\*</sup> TSAT router enables BCOTM urban operations



### Protected Bandwidth Efficient Modulation (PBEM)

 Four new TSAT (XDR+) modulation / coding pairs provide more throughput in fixed bandwidth









# OSVS Test Result Example Data Shown Taken on LL Terminal

# WFS Data Yielding Radiant Intensity



Rms wfe (tilt removed) =  $0.053\lambda$  rms

Note: 12-inch relay used

#### Narrow Beam of Source



1/e2 radius =  $9.30\mu$ rad



# PAT Telemetry Displays Used in TUT Testing Example Data Shown Tuken on LL Terminal

#### **TUT Mirror Commanded**

### LSM Search Offset Value Name TiltOffset BezOffset 390 8 1500 -300 700 1700 2700 3700

Ability to measure µrad scans demonstrated

#### **OSVS** Observed





Space Segment

### TSAT Space and Terminal Synchronization



Terminal Seament

0% - 19%

20% - 84%

85% - 100%

Terminal fielding based on Services POM08 plans (Fall 2006)

Pre-IOC

• Terminal fielding numbers represent the cumulative number of terminals from all Services

FOC

At TSAT IOC in FY17, 742 AEHF terminals and 1152 TSAT terminals fielded

IOC

Issues: HC3 COTM not synchronized with TSAT, no plans for Airborne Lasercom Terminal