Northrop Grumman Space Technology ### Challenges in balancing performance and risk #### Hammurabi's Code - 282 laws - 1760 BC - 229. If a builder build a house for some one, and does not construct it properly, and the house which he built fall in and kill its owner, then that builder shall be put to death. - 230. If it kill the son of the owner the son of that builder shall be put to death. ### **Causes of Engineering Disasters** | Insufficient knowledge | 36% | |--|---------------------------------------| | Underestimation of influence | 16% | | Ignorance, carelessness, negligence | 14% | | Forgetfulness, error | 13% | | Relying upon others without sufficient control | 9% | | Objectively unknown situation | 7% | | Imprecise definition of responsibilities | 1% | | Choice of bad quality | 1% | | Other | 3% | | | | | * Study by Swiss federal Institute of technology in Zuri | eh | | * Study by Swiss federal Institute of technology in Zuri • Funding instability | ch
∼ 36 % | | | | | Funding instability | ~ 36 %
24 % | | Funding instabilityInitial program parameters not reasonable | ~ 36 %
24 % | | Funding instability Initial program parameters not reasonable Technology below best practice maturity standards | ~ 36 %
24 %
18 % | | Funding instability Initial program parameters not reasonable Technology below best practice maturity standards Requirements instability | ~ 36 %
24 %
18 %
13 % | | Funding instability Initial program parameters not reasonable Technology below best practice maturity standards Requirements instability Staffing problems | ~ 36 %
24 %
18 %
13 %
8 % | ### Certain Failures are Unacceptable *CBC News Online | August 15, 2003, Updated November 14, 2003 #### Blackout by the Numbers 9sec - Time it took for the grid to collapse 6M - Area affected in acres 50M - Number of people affected 100 - Power plants shut down 22 - Nuclear power plants shut down 31C - Expected daytime high in Ontario #### **New York** 60 - "Serious" Fires 800 - Elevator rescues 80,000 - Calls to 911 10,000 - Police on duty #### **Toronto** **1,484** - Fire calls 110 - Elevator rescues 114 - Looting cases38 - Blackout related arrests # Where Can You Not Afford to Fail? Managing risk in a portfolio of assets **Protected Comm Satellites** # Challenges in balancing performance and risk | Development Risks | Balancing Approach | |--|---| | New missions No heritage infrastructure No heritage acquisition community No heritage domain knowledge New requirements No heritage development No heritage system engineering No heritage domain knowledge | Maximum leverage of Government and industry 25 year heritage: Experience and domain knowledge System engineering Lessons learned and development processes Requirements and configuration management Facilities, hardware and software | | Large development steps Over long life span Over significant quantity build New technology and integration | Block upgrades Technology insertion on-ramps Milstar / AEHF proven insertion heritage On-orbit upgrades RR&SD Technology maturity Integration maturity | #### 25 years of Protected Milsatcom Network Transformation ### Picking the Right Program Block Development Enables Low Risk Transformation Low Risk System Production, Take Risk in Technology Development # Picking the right Acquisition Approach Risk Reduction & System Definition (RR&SD) All TSAT technologies achieving TRL-6 or higher ### Applying the Lessons Learned and Proven Processes #### Requirements **Design and Integration Production** Definition ASIC & Unit Unit/ASIC **Subsystem Baseline** Design Processor and HW/SW HW/SW Conceptual **ASIC Production** Integration & Software Integration & Design & Verification Verification Verification Design Subsystem/unit Manufacture HW/SW co-development HW/SW integration Assembly specs VHDL Design and SW integration Hardware/software Integration Simulation Performance Verification allocation • Test Software object model Interoperability testing Algorithm and pseudocode definition Board and interface **Brassboard Demonstration** Allocation to units design and ASICS TRL 3 4 5 6 7 8 As complexity advances risk management needs to advanced ## Applying Proven Risk Management within the Program # Understanding the Risk leverage as a function of time Risk management through the life cycle # Risk Reduction Program Leverage **Program Lifecycle key milestones**