

Modular Open Systems Approach

- An integrated business and technical strategy that employs a modular design and defines key interfaces using widely supported, consensusbased standards that are published.
- Modular open architecture approach enables an acquisition strategy where:
 - Components may be acquired from multiple sources
 - Total system can be provided by multiple vendors
 - Multiple vendors may provide the replacement parts across the system over life cycle including upgrades

Goal is an Open RF Architecture Over Life Cycle

Public Law 104-113

• With regard to non-government standards, Section 12d states:

- "(1) IN GENERAL. Except as stated in paragraph (3) [exceptions] of this section, all Federal Agencies and departments shall use technical standards that are developed or adopted by voluntary consensus standards bodies, using such
 - objectives or activities determined by the agencies and departments.

technical standards as a means to carry out policy

Preferred Standards

Definitions

A system - is a collection of interacting...

...subsystems - which are collections of interacting...

...components either hardware,
software, or human, ...

...that are connected by **interfaces** - to support the interchange of information, activity, or material essential to the functioning of the system.

Intellectual Property

Developer can choose <u>any</u> implementation as long as design meets interface specification.

Component A

Component B

Benefits of Using Open Systems Standards

Motivation: Shipboard Antenna Growth

Integrated Topside (IT) Objective

- Develop and demonstrate an integrated, multifunction, multi-beam top-side aperture construct that has:
 - A scalable family of EW & communications capability to support multiple classes of ships
 - Shared apertures for multiple functions
 - Software defined functionality
 - Cost effectiveness over the life cycle
 - Increased operational capability
 - Spiral development to reduce risk and costs and have high probability for transition of technology to the fleet
 - Modular open design (apertures and electronics) to facilitate competition

Next Steps

- Reviewed industry responses to NDIA questionnaire and issued RFI for industry to define strategies for developing specific architectures and interfaces (responses due 20 April 2007)
- Implement a management IPT that includes services, SECNAV, OPNAV, acquisition community
- Prepare for contract(s) in early FY08
- Continue coordination with other potential users (Army, Air Force, NAVAIR)

Prepare to initiate IT Program in earnest when funding available.

Advance Multi-Function RF Concept

AMRFC Site Today

AMRF-C Test-Bed High Level Block Diagram

Multi-Function EW System for DDG - 1000

MFEW Passive Arrays for DDG - 1000

- (4) HPOI / Acquisition elements arranged as 4-element interferometer with 3x LOB accuracy of SLO-32 at the horizon.
- (8) Az PDF elements with 33" baseline provide compliant performance in all sea states, ship maneuvers, and signal polarizations.
- (7) El PDF elements provides compliant performance in all but worst case conditions but may exceed top hat height restrictions.

Other Ship Classes

• DEEP WATER

- SMALLER SHIPS (PATROL CRAFT, ETC):
- NATIONAL SECURITY CUTTER: SLQ-32 REPLACEMENT
- POTENTIAL FOR MISSION/CAMPAIGN BASED EQUIPMENT LOADS

• LCS

- REDUCED SIZE/WEIGHT COMPARED TO SLQ-32
- INCREASED COST ABOVE CURRENT FLIGHT 1 SOLUTIONS OFFSET BY
 INCREASED CAPABILITY AND REDUCED LOGISTICS COSTS

BACK FIT SHIPS

- SLQ-32 REPLACEMENT SIMPLIFIED BY USING ESE
- SCALABLE FROM "SLQ-32 LITE" TO DD(X) PERFORMANCE

• CG(X)

DD(X) CONFIGURATION

• CVN-21, LHA

- SEVERE SPACE LIMITATIONS ON ISLAND
- INVESTIGATE P/S OR 4 QUADRANT INSTALLATIONS OFF ISLAND

Multi-Function EW System One System - Modular & Scalable

MF (EA)	≥ \$XXM	(1-5)	Unique application / installation
ES		(5-30)	Future combatants passive sensors DDG-1000, CG(X), etc.
SA PDF SEI		(100-200)	Back fit SLQ-32 replacement DDG, CG, etc.
	≤ \$YM	(5-10)	Future SLQ-32 V2 replacement Deep Water National Security Cutter
SA MDF RWR	- 4 - 11/1	(30-50)	Small ship self protection LCS, Deep Water OPC & FRC

Rx Aperture Options

1 panoramic circular array interferometer

- Acquisition
- Precision DF (< 1°AOA)
- SEI
- EA techniques

4-element interferometer per quadrant

- Acquisition
- Medium DF (1°LOB)
- SEI
- EA techniques

14-element interferometer per quadrant

- Acquisition
- Precision DF (< 1°AOA)
- SEI
- EA techniques

Modular Integrated Link Electronics System (MILES)

MILES

CDL-S EQUIPMENT SINGLE LINK

MILES BELOW DECKS-8 LINKS

INTERFACES & FORM FIT

4 CHANNEL BASEBAND CHASSIE INCLUDING SWITCHING NETWORK,

CRYPTO, MUX & DMUX

EHF SATCOM SYSTEM SINGLE LINK

MILES ABOVE DECKS

4 CHANNEL BLOCK UP CONVERTER 4 CHANNELBLOCK DOWCONVERTER

COMMON IF ALOWS USE OF COMMON TXRX MODULE

4 CHANNEL COSITE AND OPTICAL MODULES 1/ARRAY 7"X12"X6"

Modular RF System Architecture

- Procure Up / Down-converter with Array to a Common Set of IF Frequencies
 - All Arrays Have a Standard RF Interface to Support Electronics
- Defined Interfaces Between Back-End Electronics Subsystems
- Common architecture for ground / airborne terminal applications
- Migrate to Digital Data Interface From Array To Below Decks Electronics

Digital Array Radar (DAR)

DAR Open Architecture Radar Specification (OARS)

Summary

Objective is to develop concept for RF Modular Open System Architecture to:

- Provide for RF systems that can be scalable across multiple platforms
- Enable multiple vendors to provide best of breed for the subsystems
- Enable rapid, innovative upgrades over the systems life cycle
- Cost effectiveness over the life cycle