

40 mm Less Lethal Munitions

Prepared for:

NDIA Joint Services Small Arms Systems Annual Symposium, Exhibition, & Firing Demonstration Virginia Beach, VA

Prepared by:

Keith Olasin Paul Boyadjis

7-10 May 2007

11 Apollo Drive, Whippany, New Jersey 07981-1423 Tel: (973) 326-9920 Fax: (973) 326-9919 Email: ejo@mechsol.com Website: www.mechsol.com

MSI Company Background

- 1996 Company Founded as NJ S-Corp
- **2000** Filtration Solutions, Inc. (Wharton, NJ) Spun Off as an SBIR Commercialization
- **2002** US Dept. of Commerce Best Technology Small Business in NJ
- **2007** MSI record of SBIR commercializations >80% of Phase I's awarded Phase II

Launch-tube testing at MSI of RPG-Defeat ShotScreen[™] munition

Core Competency:

Less-Lethal Munitions Design & Development

40 mm Non-Lethal SafeShotTM Round Lethal S

Paul Boyadjis, Pl

- Fires from standard M203 launcher
- Demonstrated effective up to 100 meters
- Replacement for M1006 sponge grenade
- Marker-round option

40 mm Non-Lethal Round Goals

- Extend range of the 40 mm non-lethal to 100 m
- Exceed current M1006 Sponge grenade accuracy at 50 m. of 65% hit rate
- Determine a standard hit rate at 75 m where none currently exists for the M1006 (Minimum of 65% at 75 m)
- Impart greater impact energy at 50 and 75 m than is currently delivered by the M1006

MSI's 40 mm SafeShot™ Projectile

Weight = 51.5 grams

Powder charge = 170 mg Bullseye with standard hi/low adapter

Average muzzle velocity = 235 fps

Calculated muzzle energy = 97 ft*lbs

Average ballistic clay depth = 1.685" (2.7% below limit of 1.732" at 10m)

MSI's Projectile Analysis & Test

Pressure distribution at 5 degrees of yaw

MSI's pneumatic launcher system

Performance comparison of various foams for ballistic clay testing

40 mm Less-Lethal Round

Impact images taken with MSI's High Speed Camera

Projectile impacting 3/4" plywood located 75 meters down range at 200 fps

50 Meter Dispersion Test

10 rounds from a solid mount:

- QE of 51 mils
- 100% of impacts were within an E-silhouette outline
 - Approx. 12" horizontal spread and 30" vertical spread
- Muzzle velocity standard deviation = 8.00 ft/s

Impact Velocity at 50 meters			
Avg. Vel. (fps)	Energy (ft*lbs)		
210.56	78.2		

*M1006 at 10 meters has 67 ft*lbs of energy

30"

19.5"

75 Meter Dispersion Test

10 rounds from a solid mount:

- QE of 80 mils
- 90% of impacts were within an E-silhouette outline
 - Approx. 12" horizontal spread and 48" vertical spread
- Muzzle velocity standard deviation = 6.15 ft/s

Impact Velocity at 75 meters			
Avg. Vel. (fps)	Energy (ft*lbs)		
180.33	57.4		

*M1006 at 10 meters has 67 ft*lbs of energy

Ballistic Clay Testing

Clay was tested to meet NIJ specifications prior to firing

- Target set-up at 10 meters
- Predicted values based on MSI lab testing were 1.575" with muzzle velocity 240 fps (within 6.5% of actual results)

Averages based on	Muzzle Vel. (fps)	Depth (inch)	Diameter (inch)	Muzzle Energy (ft*lbs)	% Away from Limit (1.732" NL Limit)
5 shots	238.8	1.685	2.28	100.8	-2.74%

Impact Energy vs. Range

MSI's projectile has higher initial impact energy and maintains velocity downrange

MSI's 40 mm Non-lethal Summary echanical Solutions, Inc.

Hit probability on E-silhouette exceeded goals:

- 100% at 50 meters
- 90% at 75 meters

Ballistic clay test showed non-lethality even with more energy:

- Delivers over 40% more impact energy at 10 meters than current M1006 while remaining non-lethal
- Maintains velocity downrange better than current M1006 approximately 140% more impact energy at 50 meters

Projectile reliability during 38 test shots:

- Velocity standard deviation of 12.1 fps (8.1 with no outliers)
- None of the projectiles exhibited instability (barrel does not need to be cleaned)
- Minimal horizontal dispersion even at 75 meters

INNOVATIVE WALL PENETRATION MUNITION

Keith Olasin, Pl

CHALLENGE: ACCESS EMPLACED ENEMY IN URBAN ENVIRONMENT

Problems with structure window & door access:

Conventional = anticipated

Booby-trapped / shielded

Defended by well-armed enemies

Perforate structure walls quickly = Key MOUT* tool

"Wall Penetrator" Desirable Features -

- ☐ Reduce soldier's exposure
- Mobility
- Minimize collateral damage
- □ Cost-effective approach

Build on already-familiar platform

Avoid type-classification of new weapon

□ Consider wall-perforation parameters

Mobility (soldiers) vs. attack (materials)

Innovative Wall Penetration Munition | General Solutions, Inc. | Engineering Analysis, Test & Technology / No. |

Proposed Solution: Medium-caliber munition

- □ 40 mm Caliber = Compatible with M203 launcher
- ☐ Options: Less-Lethal or Lethal

Operational Capabilities -

- □ Compatible with M203 40mm grenade launchers Proven by insertion of full-scale model into weapon
- ☐ **Perforate** typical concrete structure wall
- □ *Deliver* payload through **concrete wall** to interior space
- □ Adaptable variety of lethal or less-than-lethal future payloads / applications
- □ Firing accuracy achieved through spin-stabilization and aeroballistic analysis
- Weight of cartridge approximately 1-lb_m

Innovative Wall Penetration Munition | Solutions, Inc. | Engineering Analysis, Test & Technology / No. |

CONCEPT 1-OPERATION OF THE INNOVATIVE WALL PENETRATION MUNITION

CONCEPT 2 OPERATION OF THE INNOVATIVE WALL PENETRATION MUNITION

Innovative Wall Penetration Munition | Solutions, Inc. | Engineering Analysis, Test & Technology / No. |

MSI's 40 mm INNOVATIVE WALL PENETRATION MUNITION HAS BEEN DESIGNED TO BE FIRED FROM ANY STANDARD M203 LAUNCHER:

TO LOAD THE M203, A BREECH LOADING WEAPON. THE BARREL SLIDES FORWARD TO OPEN THE FIRING CHAMBER

MSI'S UNIQUELY CONTOURED WINDSHIELD **DESIGN** IS THE KEY TO THE 40 mm ROUND'S COMPATIBILITY WITH THE M203 LAUNCHER

THIS CUTAWAY VIEW DEPICTS KEY COMPONENTS OF MSI's 40 mm ROUND:

Hardware Design & Testing Progress

- ☐ Penetrating charge design *successful*
 - Consistently perforated concrete targets
 - □ Holes large enough for followthrough injection
- ☐ Charge design *optimized*, using initial test results & hydrocode analysis
 - □ Second round of testing scheduled for May 2007
 - ☐ Hole-formation improvement expected
 - □ Added flexibility in follow-through munition design

- □ Follow-thru
 - ☐MSI investigating flash-bang concepts
- ☐ Fuze system
 - ☐ Preliminary design complete
 - ☐ Evaluating components
 - ☐ Potential S&As identified, investigating designs with fuze manufacturers

U.S. Army SBIR Project – ARDEC, Picatinny Arsenal

Cost and Schedule Summary -

Phase I: 40mm Innovative Wall Penetration Munition,

\$70K / 6 Months, Completed July '05

Phase I Option: Warhead Design: \$50K / 4 Months,

Completed January '06

Phase II: Development of Prototype Weapon, \$730K /

24 Months, January '06- January '08

Phase III Prototype 24-Months Total Round (Unfunded)

List of Current Munition Developments

- ♦ 40 mm Non-Lethal Round SafeShotTM
- ◆ 40 mm Wall Penetrating Round DoubleShot[™]
- ♣ RPG-Defeat System ShotScreenTM
- ◆ 12-Gauge Tagging & Marking Round SafeTag[™]
- ☼ 12-Gauge Door Breaching Round DoorBuster[™]

Please Visit MSI's Web Site, www.MechSol.com

Call / E-mail -

Paul Boyadjis 973-326-9920 Ext.-115 pab@mechsol.com
Keith Olasin 973-326-9920 Ext.-120 kbo@mechsol.com
Eric Olson 973-326-9920 Ext.-125 ejo@mechsol.com