

Heavy Machinegun Fire Control as a Distributed Operations Enabler

9 May 2007

Joseph Brus

Expeditionary Warfare Division
Naval Surface Warfare Center Crane
joseph.brus@navy.mil
812-854-2314

Bill Shaff Systems Engr Lead william.shaff@navy.mil 812-854-3618 Russ Thies
Mechanical Engr Lead
russ.thies@navy.mil
812-854-5584

Background

- Request from ONR Code 30 Fires to address 40mm Indirect Fire feasibility as part of Improved Fire Control Systems FNC
- Proof of Concept demonstrator built and tested in late FY03
 - COTS components
 - In-house software
 - MCWL weapon/ammo/test support

Technical Approach

- Ballistic kernel calculates targeting solution using
 - Target & weapon geo-location
 - Inertial sensor for weapon attitude
 - MET data
- Provides aiming parameters to gunner when firing from defilade
- Lobbing trajectory allows substantial mask clearance at longer ranges
 - Hills
 - Trees
 - Buildings

40mm Range/Trajectory

Low Angle Solution Only

Low and High Angle Solutions Possible

Proof of Concept Test

- Demonstrated 40mm Indirect Fire Proof of Concept
 - Used GD 40mm ALGL as test platform
 - Accurate to full range of weapon
 - Promising results exceeded user expectations

- Improvements needed
 - High-angle ballistic profile
 - Hardware integration
 - Software usability
 - Gunner interface

Hawthorne, NV, 2003

Emerging Guidance

- Marine Corps Improved Heavy Machinegun (IHMG) UNS
 - Signed Nov 2003 by BGen Neller
 - Validated by DOTMLPF working group Feb 2004
 - Improved .50 cal and 40mm weapons
 - Common compatible mount w/ quick slewing capability
 - Direct and Indirect Fire Control with integral LRF
 - Common optics bench for current/emerging inventory sights
- Addresses Expeditionary Maneuver Warfare Capability Gaps
 - Enhance capabilities of infantry heavy weapons by incorporation of advanced fire control technologies.
 - Provide all-weather, fully integrated, and continuous lethal and nonlethal fires with extended range, volume, and accuracy.
 - Develop means to reduce time delay from target detection to identification and from target identification to engagement.
 - Provide extended, coordinated, and sequenced joint fires in support of maneuver elements.

HMG Indirect Fire History

- Used effectively in WWI & WWII "rain of slugs"
- Occasional use in Korea
- Foliage of Vietnam reduced opportunities
- New mounts did not facilitate high angles
- Instruction/Training lacking
 - Time and Ammunition intensive
 - .50 cal Indirect Fire is a lost art no longer taught
 - 40mm Indirect Fire only taught at MC Advanced Machinegun leaders course
 - 45 minutes to set up a mission
 - Lucky to hit within a football field on first shot
- Lack of doctrine for accurate, coordinated, and timely employment
- Loss of expertise due to lack of use

Technology Opportunity

- Major transformation for Heavy Machineguns
 - Extends practical useable range of weapons
 - Enables timely execution of accurate indirect fire
 - Increase in first round accuracy for direct fire

- Ideal for current conflicts & MOUT engagements
- Situational awareness for heavy machinegun teams
- Networked Fire Control allows
 - Direct sensor-to-shooter link
 - Call for fire support on targets of opportunity
 - Collaborative attack capability

Project Sponsors

- Office of Naval Research (ONR)
 - Expeditionary Maneuver Warfare Department
 - Fires Thrust Area

- Marine Corps Warfighting Lab (MCWL)
 - Technology Division
 - Ground Combat Element Branch

Team Responsibilities

- Technology Transition Agreement between ONR, MCWL, & MCSC signed June 2004
 - NSWC Crane (ONR Design Agent)
 - Fire control development
 - Communications / networked fires interoperability
 - Overall system integrator
 - Coordinate technology demonstration

- MCWL

- Advanced Common Mount (ACM) development
- Evaluation of MK19 replacement candidates
- Weapon, ammo, and range support for tests and demos
- Operational demonstrations
- Funded fire control completion and system verification test in FY06

Indirect Fire Employment

Direct Fire / Sensor Employment

HMG with DF/IF capability

HMG determines target's location using LRF, IMU, and GPS

HMG sends digital target information via JVMF

Fire orders sent via JVMF

Fire support asset delivers ordnance

Enemy target

Distributed Operations Enabler

A Concept for Distributed Operations. 25 April 2005. Department of the Navy, HEADQUARTERS U.S. MARINE CORPS, Washington, DC.

- Provide the ability to distribute or re-aggregate depending on the threat.
- Provide the ability to quickly and accurately engage targets using a distributed processing architecture.
- Provide collaborative and coordinated engagement of targets.
- Provide teams that are multifunctional (sensor, shooter, and/or comms relay).
- Provide multiple teams a coordinated, interdependent approach to intelligence gathering, situational awareness, and target identification/location.

Distributed Ops Application

HMG Fire Control on CCM

Weapon Attitude Sensor

PLGR or integrated SAASM

Computing Platform

Optical Quadrant Deck

Gunner's Display

Common-Compatible Mount w/ std T&E

HMG Fire Control on ACM

16

Optical Quadrant Deck

Motorized Direct Fire platform keeps eyes on while engaging targets

17

Computing Platform

Shock Mounted PC-104 Stack

Single Board Computer

Solid State Hard Drive

SAASM Compliant GPS

•Tactical Radio Interface

•8-port Serial Card

OQD Motor Controller

Squad Leaders Display - CJMTK

Squad Leaders Display - Fixed

Gunners Display

Weapon Aiming Cues

System Data Interface

System Verification Test

Test conducted by MCPD Fallbrook at Hawthorne, NV in Sept 2006

Test system performance against TTA exit

criteria.

 40mm HK GMG and M2HB .50cal

- Direct Fire and Indirect Fire engagements
- Low and High QE 40mm
- Average Radial Error for accuracy
- CEP for burst fire precision

.50 cal Direct Fire @ 1400m

.50 cal Direct Fire @ 4000m

.50 cal Indirect Fire @ 4800m

40mm Direct Fire @ 1600m

40mm Direct Fire @ 1600m

40mm Indirect Fire @ 1600m

HMG TTA Exit Criteria

Attribute/Parameter	Current	Threshold	Objective
System Weight	150 lbs – foot mobile with 3 Marines	Shall not increase number of personnel needed to transport weapon	Shall not add more than 10 pounds total to weapon system
Indirect Fire Engagement Time - ground	Greater than 15 minutes	Less than 7 minutes	Less than 2 minutes
Indirect Fire Engagement Time - vehicle	No Capability	Less than 7 minutes	Less than 2 minutes
40mm Indirect Fire Accuracy - first shot	Radial error greater than 200m	Average radial error < 50m	Average radial error < 15m
40mm Indirect Fire Accuracy - first adjust	Unknown	Average radial error < 15m	Average radial error < 5m
40mm Fire Precision - automatic fire	Unknown	Achieve CEP < 50 m	Achieve CEP < 15 m
.50 cal Indirect Fire Accuracy - first burst	No Capability	Achieve beaten zone impact within 100m of target	Achieve beaten zone impact within 50m of target
.50 cal Indirect Fire Accuracy - first adjust	No Capability	Achieve beaten zone impact within 50m of target	Achieve beaten zone impact on target
.50 cal Direct Fire accuracy on first burst	Unknown	Achieve beaten zone impact on target at 75% of weapon's maximum effective range (1400m)	Achieve beaten zone impact on target at 110% of weapon's maximum effective range (2000m)
Integrated Fire Control	No automated fire control for indirect fire	Provide onboard fire control using HMG-unique BK	Provide onboard fire control using integrated NABK
Networked Fires Connectivity	Voice only.	External connectivity to higher echelons via JVMF encoded messages	Same as threshold.

Results Summary

- Achievable effects on target on initial engagement
- Consistent effects on target after first adjustment
- Low angle accuracy is better than High angle, but allows for less mask clearance

Potential Enhancements

- Improved inertial sensor
 - Smaller/lighter
 - Improved accuracy
 - Greater shock tolerance
- Ammunition improvements
 - More consistent muzzle velocity
 - Less variance from propellant temp
- Wind compensation
 - Improved collection of wind data
 - Better incorporation of wind data into BK

Questions?

For more Information:

Joseph Brus NSWC Crane joseph.brus@navy.mil 812-854-2314

Capt Mike Vorgang
Marine Corps Warfighting Lab
roland.vorgang@usmc.mil
703-432-0450

Maj Michael Ries
Office of Naval Research
michael.ries@navy.mil
703-696-2572

