National and Homeland Security at INL

- The United States of America is faced with unprecedented challenges in National and Homeland Security
- The Idaho National Laboratories is well positioned to meet many of these challenges and enable sustainability for the long war

Multi-Directorate Federal R&D Laboratory

- Leverage science and engineering technologies to form international partnerships that address both DOE R&D and National and Homeland needs
- Annual budget of ca. \$600M
- 3,400 scientists, engineers, technicians, and other staff
- Three S&T Campuses on 890 square mile site

Idaho National Laboratory

The INL R&D

Mission execution is guided by five laboratory divisions

Nuclear Energy

Advanced Test Reactor

National Security

Energy and Environmental Sciences

Idaho National Laboratory

Our Focus Areas Support Multiple Missions and Enable Sustainability

Global Security

National Defense

Homeland Security

Special Programs

Energy Security

Focus Areas

SCADA / Cyber/ Power Grid

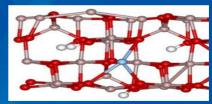
Wireless Technology

Unmanned Vehicle Systems

Explosives
Detection &
Testing

Chemical / Nuclear Detection, and Nonproliferation / Safeguards & Security

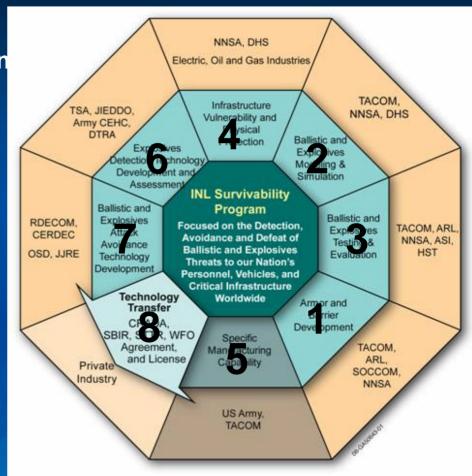
Special Mfg Center Emerging Armor--Vehicle / Barrier/ Structural/ Personnel


Technology Platforms

Process Controls

Materials

Physics, Molecular Science, Modeling


National & Homeland Security Objectives & Key Customers We Serve

Mission Area Customer	Strategic Objective	
Global Security NNSA	Reduce global nuclear threats through innovative nonproliferation and counterproliferation technologies	
National Defense DoD	Provide solutions to asymmetric threats and combat WMD	
Homeland Security DHS	Develop science and technology to protect critical infrastructure systems and improve resilience	
Special Programs Various Clients	Provider of choice, in selected areas, for technology based solutions to the U.S. Intelligence Community	
Energy Security DOE-OE	Enhance security and reliability of the nation's energy systems	

National and Homeland Security INL Survivability Program (ISP)

The ISP is an Agile Collaboration of Capabilities at One Location

- 1. Armor and Barrier Development
- 2. Ballistic and Blast Modeling Simulation
- 3. Ballistic and Blast Test & Evaluation
- 4. Critical Infrastructure Vulnerability
 Assessments
- 5. Specific Manufacturing Capability
- 6. Explosives Detection and Advanced Technology Development
- 7. Ballistics and Explosives Attack
 Avoidance & Hardware Development
- 8. Technology Transfer for Scale Up Hardware to the End User

Example of INL Commercial Partnership in Survivability Systems Development

Advisory Support & Technical Requirements

Development

R&D
Prototyping
Testing & Evaluation
Design & Engineering
Network & Contacts

Classification Control

Advisory Support & Technical Requirements Development

Material Development
Material Manufacturing
Marketing

Mfg Material Requirements

Material Supply

System Design & Engineering
Marketing
Production

National and Homeland Security INL Survivability Program (ISP) - Leadership

Armor Development

- Leadership in design, development, and testing of high-density, lightweight armor against multiple threats.
- Test range with extensive capability for confidential testing.
- INL armor proven against ballistic, kinetic, blast & frag threats.

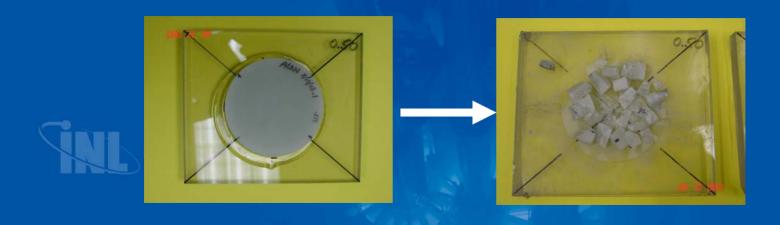
Explosives Testing

- Leadership in trace and bulk explosives detection, blast effects, shock and vibration analysis.
- Class Facilities: 20,000 Lb TNT equivalent test range and Class II, Div. I Operations Room for explosives assembly.
- Performance/ Resiliency Testing: Ballistic Penetration, Structural Analysis, Computer Modeling/Simulation,
- Development of Protective Countermeasures.

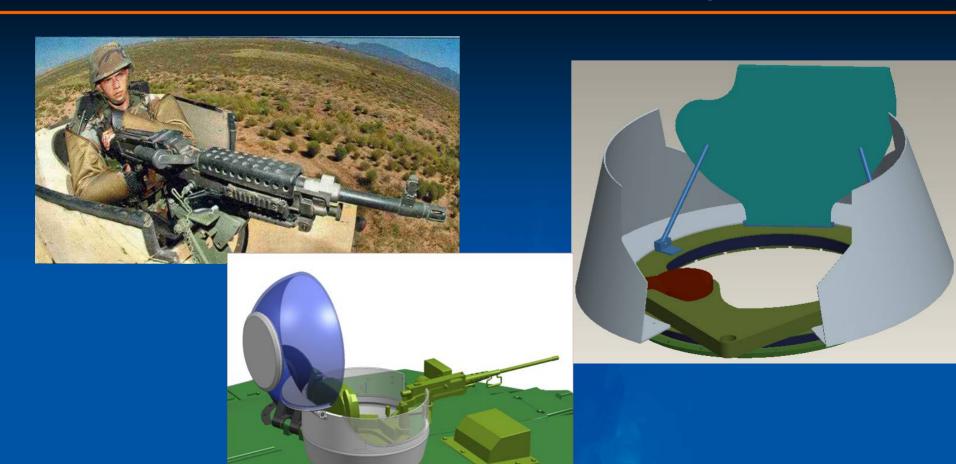
Technology Development

- Leadership through over 3,500 world-class scientists and engineers in technology development and national security solutions.
- Award-winning technologies in Global use: Idaho Explosives Detection System.
 Breaching Shotgun, Tactical Timed Firing Device, Change Detection System,
 PINS for Munitions Assessment

Armor and Barrier Development

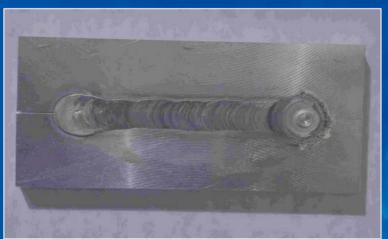


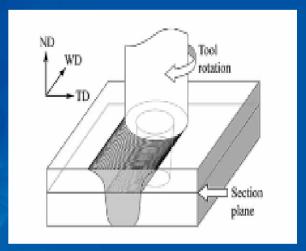
- Advanced Materials
 - Ballistic Steels
 - Alloyed Metals
 - Ceramics
 - Transparent Ceramics
 - Polymers
 - Composites
 - Joining
- Design & Simulation
 - Ballistic
 - Blast
 - Fragmentation
- Prototyping & Evaluation
- Special Manufacturing Center
 - Over 9000 Abrams Premier battle tanks in use worldwide


Optical Armor and Ballistic Results

- Aluminum Oxy-Nitride is a "premier" transparent armor material. Today, AION is not available to in commercial quantities. Presence of residual porosities will prevent full optical transparency
- INL is developing novel approaches to pressure-less sintering of ALON.
- Successful Target LOS AD = 10.5 lb/sq ft
- Design: ALON + polyurethane + polycarbonate
- Defeat: 30-cal APM2 @ 2810-2828 ft/sec @ 20.5' standoff

Lightweight, High-performance Gunner Ballistic Cupola INL CRADA Demonstration Project


Improved Ballistic / Blast Resistant Conformal Armor Cupola

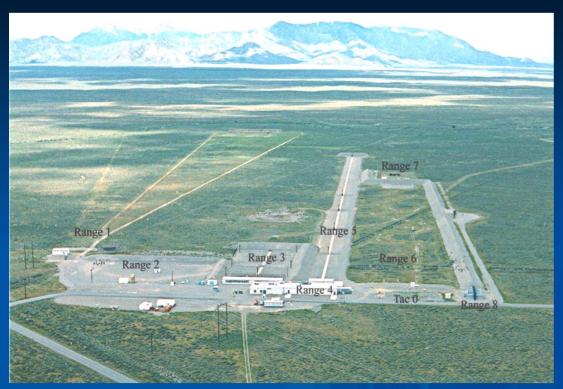

Joining and Welding of Metal Alloys Using Advanced Solid-State Friction Stir Welding

INL's
Advanced
Tooling
Materials

ldaho National Laboratory

ISP's Full Scope Multi-Services Supports Up-Armoring Special Operation Combatant Crafts

- Armor expertise and T&E support to USSOCOM on retrofit armor solutions for the Coastal Assault Craft (CAC) and new Special Operation Craft – Riverine (SOCR)
- Consultation and design supports provided to SOCR builder
- Development of close-quarter ricochet and shrapnel suppression system
- Riverine fleet expanded from initial "x" to "y" units, based in Stannis, MS
- Currently deployed at Tigris River, Iraq



INL Live-fire Range Complex & Capabilities

- 10 ranges
- Live fire training
- Various weapons

- Surface Danger Zones =4.7 miles. At the 20,000 lb range = 8 miles
- Live Fire Ballistic Test Range
 - 30 cal, 50 cal APM2
 - 14.5 mm BS32, BS41
 - 20 mm FSP and AP
 - LAW and RPG
 - 30 mm FSP and AP
 - Other: hypersonic
- Explosive R&D range
 - 500 lbs.
 - 20,000 lbs.
- Fabrication shop support

Design and Simulation

- Vehicle Armor
- Personnel Protection
- Barrier Armor
- Ballistic Effects
- Blast Effects
- Combined Ballistic and Blast
- Molecular modeling (explosives)
- Molecular Engineering (novel organics)
- Processing of Ceramics and Polymers

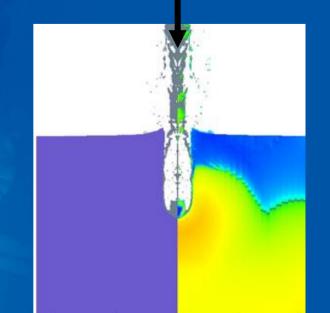
INL Applied Mechanics

INL Center For Advanced Modeling and Simulation (CAMS)

Analytical

- Nuclear Reactor safety analyses
- Pressure vessels and piping
- Flight safety
- Shock and vibration
- High-velocity and hypervelocity impact
- Blast

Experimental


- Impact
- High strain-rate materials
- High temperature materials
- Shock and vibration

Design

Prototype and One-of-a-kind

Analytical Tools:

- ✓ ABAQUS/ Explicit
- ✓ LS-DYNA
- ✓ CTH
- **✓ ALEGRA**
- ✓ ALE3D

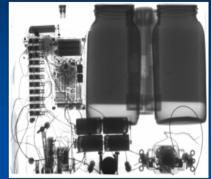
Explosives Detection & Defeat

Bulk Explosives Detection Programs

Trace Explosives Detection Programs

Tactical Timed Firing Devices/Disruptors

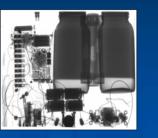



Bulk Explosives Detection Programs

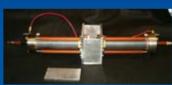
Neutron Interrogation Systems - X-Ray and CT Technologies

- 1. Portable Isotopic Neutron Spectroscopy (PINS)
 - --- Identifies chemicals/explosives in munitions

Single Munitions Scanner (SMS) (component of Mobile Munitions Assessment System (MMAS)


- 2. Remote/Standoff Explosives Detection System (R/SEDS)
 - --- Detects explosives in medium-sized trucks and vans

Trace Explosives Detection Programs


I. Trace Detection Systems Testing – FAA and TSL

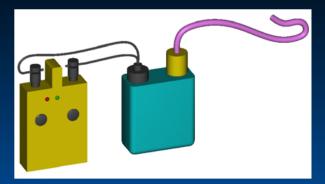
- Perform Independent Validation and Verification testing for the Transportation Security Administration (TSA)
- Test trace detection systems against actual explosive threats
 - IEDs in Electronic Devices
 - IED Manufacturers
 - IED Couriers
 - IED in Suitcases

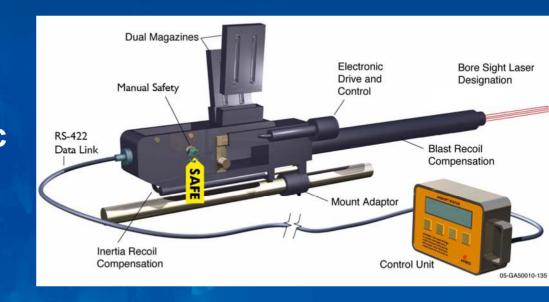
• Ion Mobility (+-) Spectrometer research in trace explosives

II. Trace Detection Systems Development

- Develop and test advanced Ion Mobility Spectrometer (IMS) concepts and prototypes
- TeraHertz Sensors R&D
- Advanced IMS modeling capability

Idaho National Laboratory



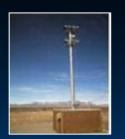

Tactical Timed Firing Devices/Disruptors

Remote Firing Devices

Multi – IED Disruptor uses "operator selected" kinetic energy penetrators

Critical Infrastructure Test Range Complex

Critical Infrastructure Test Range Complex


- National, comprehensive program where technologies, systems and policies that protect the nation's critical infrastructure are developed, tested and validated under real-world conditions
- INL is the DOE National SCADA Test Bed
- INL separate site power grid. \$100M's of isolated infrastructure investments over past 50 yrs.
- Research Test Beds include:
 - Explosives Detection (Bulk and Trace)
 - Explosives/Weapons Effects Testing
 - Unique Communications/Wireless Test bed
 - UAV Research
 - SCADA Vulnerabilities
 - Cyber Security and Physical Security
 - Contraband & Weapons Detection

INL's Unique Communications Range Capabilities

1) "Clean" Frequency Spectrum

- Low RF noise: No urban areas or military bases
- NTIA Experimental Radio Station, Local Spectrum Manager
- Can use Next Generation / International frequencies given:
 a) no harmful interference, b) test / experimental use only

2) Full-Scale, Isolated Communications Networks

- Cell grid is isolated from PSTN, Fiber net isolated via DWDM
- Ability to link with other INL assets or external labs
- Future: Full Telco/ISP test range combined with Cyber R&D

3) "Open" Range that Cooperates with Commercial Vendors

- Commercial infrastructures are complex
- Mix of worldwide (foreign) vendors
- Leverage testing experience with cutting-edge commercial technologies

4) Flexible, Multi-program Lab

- Confluence of a variety of infrastructures (Cyber, SCADA, Comms, Physical)
- Variety of capabilities (R&D, Integration, IV&V Test, QRC, Train, Analysis ...)
- Range assets, simulation resources, engineering, and operations staff

Robotics

- DOD Unmanned Systems Program Area
- Robotic Autonomous Countermine Development
- Robotic Intelligent NOde (RINO)
- Next-Generation User Interface Development
- UAV Autonomous Flight Operations
- Geospatial Data Collection/Exploitation
- Unmanned Air/Ground Vehicle Collaboration

DOD Unmanned Systems Program Area

Robotic Autonomous Countermine Development

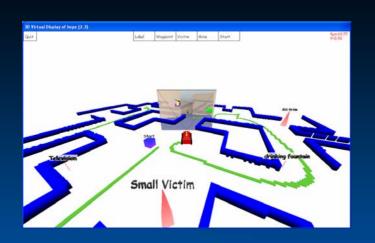
• 100% (134 / 134) Detected SLM

• 4 times faster than trained human

Low Cost

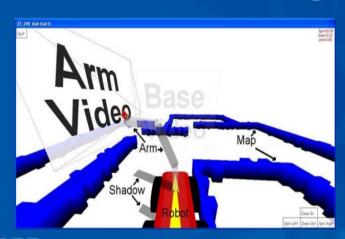
Robotics: Robotic Intelligent Node (RINO)

Capability for 5 mission variants with and without human


Mode of Autonomy	Defines Task Goals	Supervises Vehicle Direction	Motivates Motion	Prevents Collisions
T eleop	Human	Human	Human	Human
Safe	Human	Human	Human	Robot
Shared	Human	Human	Robot	Robot
HLTasking	Human	Robot	Robot	Robot
Autonomous	Robot	Robot	Robot	Robot

 Development of an autonomous unmanned system for COTS 4-Wheel ATV for test and demonstration of sensors, behaviors, and payloads

for ground based Unmanned Vehicles System Development.


Affordability: commercial ATV Ground Vehicles

Next-Generation User Interface Development

Detection and Recognition → Decision and Action

Idaho National Laboratory

UAV Autonomous Flight Operations Geospatial Data Collection/Exploitation

Unmanned Air/Ground Vehicle Collaboration

National and Homeland Security at INL

- The United States of America is faced with unprecedented challenges in National and Homeland Security
- The Idaho National Laboratories is well positioned to meet many of these challenges and enable sustainability for the long war

John Garnier Armor Program Lead john.garnier@inl.gov

