

Global Positioning System (GPS) Systems Engineering (SE) Case Study

Randy Bullard AFIT/SYA 25 Oct 2007

- Why SE Case Studies Are Important
- Example GPS
 - Method of Analysis
 - Results
 - Benefits (Education & Practice)
- Foundational SE Learning Principles
- Summary

Agenda

Why We Do Case Studies

- AF Center for SE tasked to develop case studies
 - Focus on application of SE principles in various programs
- Additional case studies
 - Completed:
 - C-5
 - F-111
 - Hubble Telescope
 - Theatre Battle Management Core System (TBMCS)
 - B-2
 - Joint Air to Surface Standoff Missile (JASSM)
 - In work: A-10 & Peacekeeper
 - More on contract in FY08

Case Study Construct

- Support teaching & practicing of SE principles
 - Facilitate learning by emphasizing long-term consequences of SE & programmatic decisions on program success
 - Provide real-world, detailed examples of how SE process attempts to balance cost, schedule, & performance
- Used Friedman-Sage framework & matrix for analysis
- Identify learning principles
 - Discuss factors that significantly influenced successful outcome and failures of the program

SE processes used in today's complex system and system-of-systems were matured and founded on principles developed in the past.

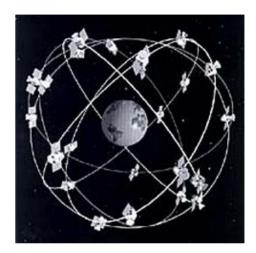
Friedman-Sage Framework

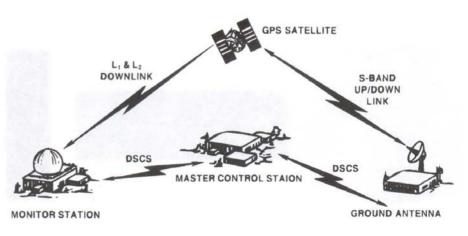
- Developed by:
 - Dr George Friedman: University of Southern California
 - Dr Andy Sage: George Mason University
- Comprised of 9 concept domains (rows) & 3 responsibility domains (columns)
 - Rows represent phases in SE life cycle & necessary process and systems management support
 - Columns depict responsibilities from both sides of the program (industry and government)
- Derived into matrix
 - Identifies learning principles
- Used as analysis baseline

Friedman-Sage Matrix

	Concept Domain	Responsibility Domain		
		1. Contractor Responsibility	2. Shared Responsibility	3. Government Responsibility
A.	Requirements Definition and Management			LP 3
B .	Systems Architecture and Conceptual Design			
С	System and Subsystem Detailed Design and Implementation			
D.	Systems Integration and Interface			LP 2
E.	Validation and Verification			
F.	Deployment and Post Deployment			
G.	Life Cycle Support			
Н.	Risk Assessment and Management		LP 4	
I.	System and Program Management		LP 1	

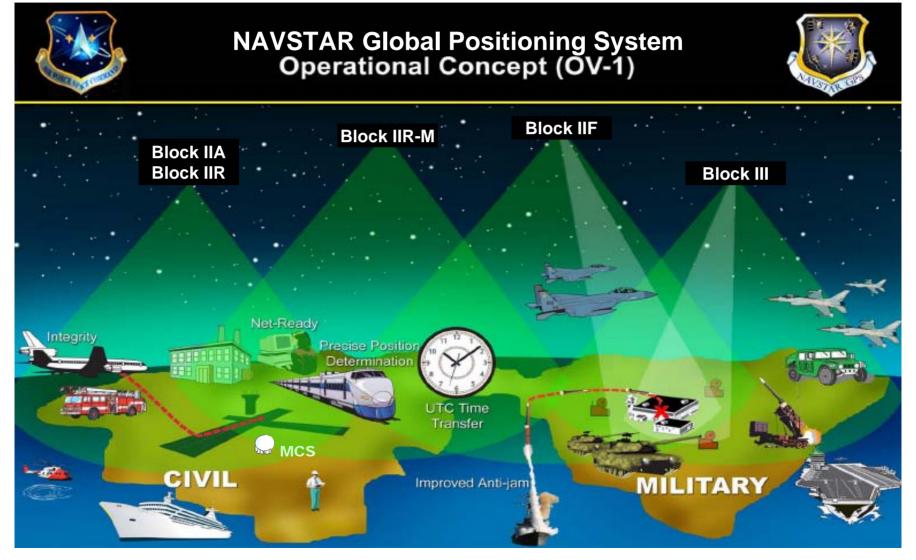
GPS Program Background


- Russians launched Sputnik, 1957
 - Satellite circled earth broadcasting its tone
 - US engineer postulated using Doppler Effect
 - Orbiting satellite could compute location on Earth
 - Air Force & Navy established separate programs
 - They demonstrated many key technologies
- DoD established Joint Program Office (JPO), 1972
 - Purpose was to replace land-based navigation aids
 - Air Force was assigned to lead JPO
 - Joint effort included Army, Navy, & Coast Guard
 - JPO tasked to develop space-based navigation system



GPS System

- System requirements
 - Accurate
 - Global
 - Real-time
 - Continuous
 - Additional characteristics
- System design
 - Space Vehicle (SV)
 - User Equipment (UE)
 - Control Station (CS)



GPS SE Approach

- JPO constructed system specification
 - It became the functional baseline
 - Strategy was to manage:
 - Requirements at the performance level
 - Interfaces between space vehicles, control stations, & users
 - Process highlighted cost, schedule, & performance risks
 - Impacted team derived alternatives
 - Decisions made quickly by management
- Program placed emphasis on staffing key positions
 - JPO staffed with technical officers & civilians
 - Aerospace augmented with engineering & scientific staff

- 1. Programs must strive to staff key positions with domain experts
- 2. The systems integrator must rigorously maintain program baselines
- 3. Achieving consistent and continuous high-level support and advocacy helps funding stability, which impacts SE stability
- 4. Disciplined and appropriate risk management must be applied throughout the lifecycle

Learning Principle 1

Programs must strive to staff key positions with domain experts

- Program personnel were well-versed in their disciplines
 - All possessed a systems view of the program
 - Entire team understood implications of their work at all system levels
- They used a knowledge-based approach for decision making
 - Information was understood and the base and alternative solutions were accurately presented.
 - This shortened the decision cycle
- Additional benefits were realized
 - Communications were better
 - Working relationships were improved

The systems integrator must rigorously maintain program baselines

- JPO retained the role of managing and controlling the systems specification
 - This allowed control of functional baseline
- They derived and constructed an "agreed-to" set of systems requirements that became the program baseline
 - Performance/Risk/Cost trade studies against functional baseline used to control both risk and cost
 - Interface Control Working Group process managed the functional requirements on the allocated baseline
 - Processes gave JPO first-hand knowledge and insight into risks at lowest level

Achieving consistent and continuous high-level support and advocacy helps funding stability, which impacts SE stability

- OSD support provided requirements and funding stability
 - They provided advocacy and sourced funding at critical times
 - They catalyzed coordination among the various services
 - They reviewed & approved GPS JPO system requirements
- OSD played the central role in the establishment and survivability of the program
 - They had support from Deputy Secretary of Defense
- Military services were primary users & eventual customers
 - Each service initially advocated their individual programs
 - SECAF supplied manpower & facilities

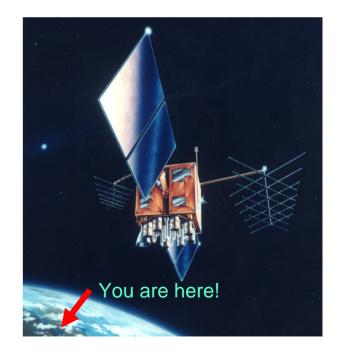
Disciplined and appropriate risk management must be applied throughout the lifecycle

- GPS program structured to address risk throughout the multiphase program
- Key risks were known up front
 - Contractor and/or government utilized a classic risk approach to identify & analyze risk
 - They developed and tracked mitigation actions
 - Various risks (design, manufacturing, launch) were managed by office who owned those risks
- Technical risks tracked by Technical Performance Measures (TPMs)
 - Satellite weight & SLOC were tracked
 - TPMs addressed at weekly chief engineer's meetings

SE Outcomes

- SE played major role in GPS success
 - Identifying system requirements
 - Integrating new technologies
 - Taking system of systems approach

- Interfacing with many government & industry agencies
- Dealing with lack of an operational user early in program formation
- Key learning principles identify SE processes
 - Application of SE processes is required throughout life cycle
 - Experienced people applying sound SE principles, practices, processes, & tools are necessary at each phase



GPS Program Success

- JPO overcame numerous challenges:
 - Technology, customers, organization, cost, & schedule
 - Integrating new technologies
- Program achieved great success
 - Military relied upon extensively
 - Civilian applications growing
 - Unique uses invented

Imagine current technology without GPS!

CSE Case Studies

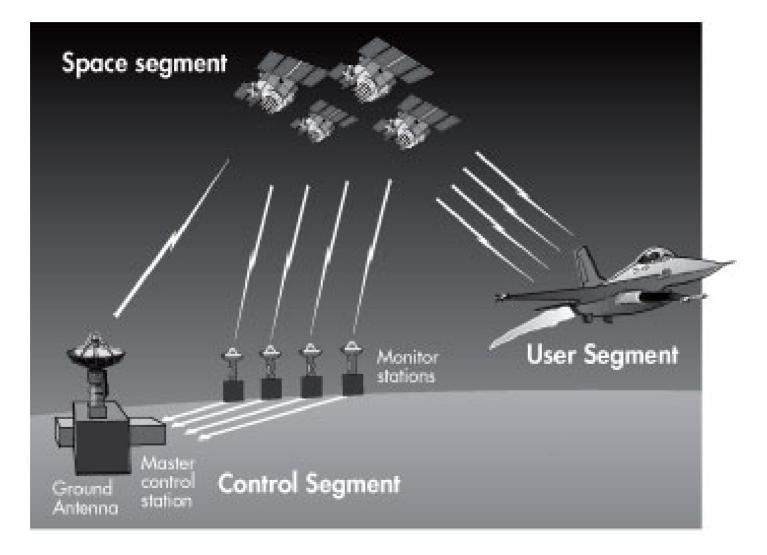
Case studies on our website: http://www.afit.edu/cse/cases.cfm

B-2

C-5

Hubble

F-111



Questions?

