

Implementing and Measuring a Test Program in a Sustainment Environment

23 Oct 07

Jim Miller Chief Engineer 727 ACSG/EN Phone: (405) 736-7996 james.c.miller@tinker.af.mil

What Sustainment Environment?

727th Aircraft Sustainment Group

Col. James Fulton Commander

Ms. Jerri Hulme Deputy Director

Mr. James Miller Chief Engineer

PROVIDING EFFECTIVE & EFFICIENT WEAPON SYSTEM SUPPORT

727 ACSG Mission

Single Manager for Sustainment and Modernization of 250 USAF Commercial-Derivative Aircraft HF Global Communications System Network Preserves FAA Certification and Operational Safety, Suitability & Effectiveness (OSS&E) of Commercial Derivative Aircraft

4 Squadrons Manage Services Acquisition

'Cradle-to-Grave CLS Support'

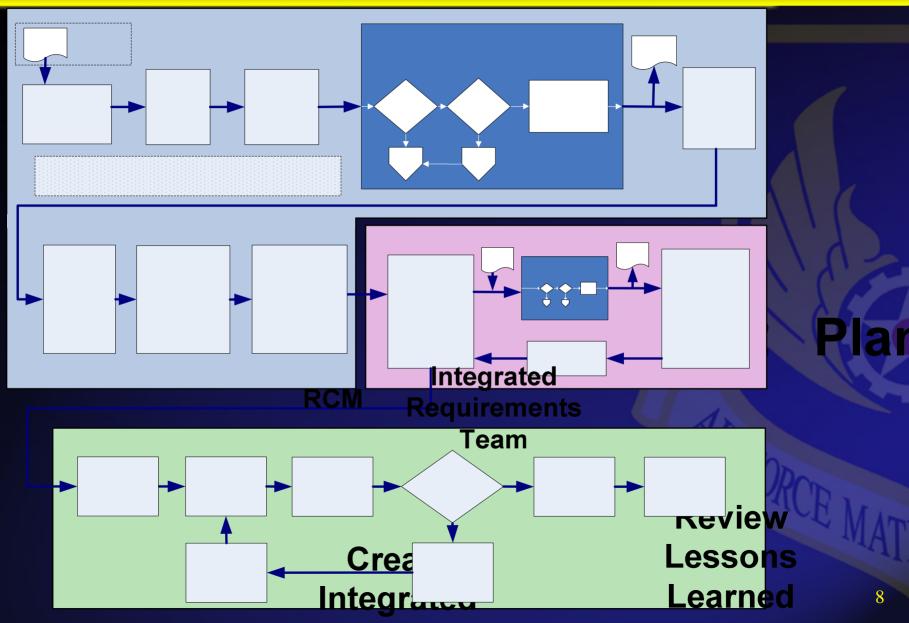
Weapon System Support

727th Aircraft Sustainment Group Contractor Logistics Support (CLS)

- Weapon Systems
 KC/KDC-10
- VC-25
- E-4B
- **C-9**
- C-12
- C-20
- C-21
- C-26
- C-38
- E-9
- T-41
- T-43
- T-51
- TG-10
- TG-15
- UV-18
- Peace Lotus
- HFGCS

- Customers • AMC
- ACC
- ANG
- AFRC
- AETC
- USAFE
- PACAF
- AFMC
- USAF ACADEMY
- AF FLIGHT STD
- AGENCY
- ARMY
- NAVY
- US MARINE CORP
- DIA
- DSCA
- FMS
- USSOCOM

727 ACSG Responsibilities


Weapon System's Missions

So What is the Problem?

- Sustainment environment different
 - Not one big pass/fail test
 - Most tests associated with mods
- Our organization had an ad hoc, contractor dependent, aircraft unique test approach
- Instigated a step-by-step Operating Instruction
 - Approach
 - Management
 - Expectations
 - Throughout the organization
- Implemented tangible approach that is:
 - Aimed at the working level
 - Applicable throughout entire organization
 - Accounts for progress through metrics
 - Always starts with requirements

Test Process Flowchart

Step 1: Build an Integrated Test Team (ITT)

- Program Manager formally establishes ITT in writing
 - Standard Letter
- ITT consists of, at a minimum:
 - Program Manager
 - Project Engineer
 - Center Test Authority
 - Responsible Test Organization
 - Representative from the customer
 - Representative from the contractor

Step 2: Review Lessons Learned

- Everyone thinks their test is unique—but they are usually wrong
- Review established lessons learned for:
 - Quantifiable criteria (e.g. noise)
 - Testing Techniques (e.g analysis, M&S...)
 - Test Methods
 - Previous Problems
 - Operational Scenarios

Step 3: Define Test Requirements

- Review established Requirements Correlation Matrix (RCM)
 - Ensures test requirements has direct link to source requirements
- For each requirement ask:
 - Is it quantified?
 - Is it verifiable/testable/measurable?
 - What verification method?
- If need be, send requirements back to program manager for clarification
- For risky verifications/testability, send risk to Risk Management Team

Define Requirements

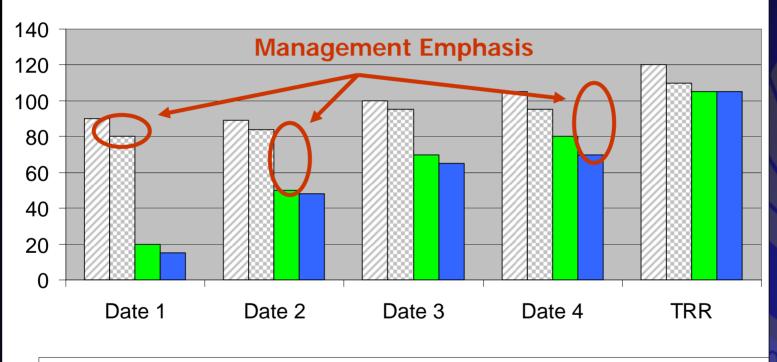
- Break initial requirements down into a Requirements Correlation Matrix (RCM):
 - Spreadsheet with following columns:
 - Requirement
 - Requirement Source
 - Derived Requirements
 - Quantification
 - Operational Conditions
 - Initial Risk Assessment
- Give RCM to
 - Test Team for their planning
 - Risk Mngt Team for their planning

RCM

Req Title	Req Source	Derived Req	Req Definition	Quantification	Op Cases	Risk (R/Y/G)
						V'A
					21	
Program Manager		jer	Project Engineer(s) (Gov & Contr.)		Jser Entir	e Team 13

Step 3: Define Test Requirements

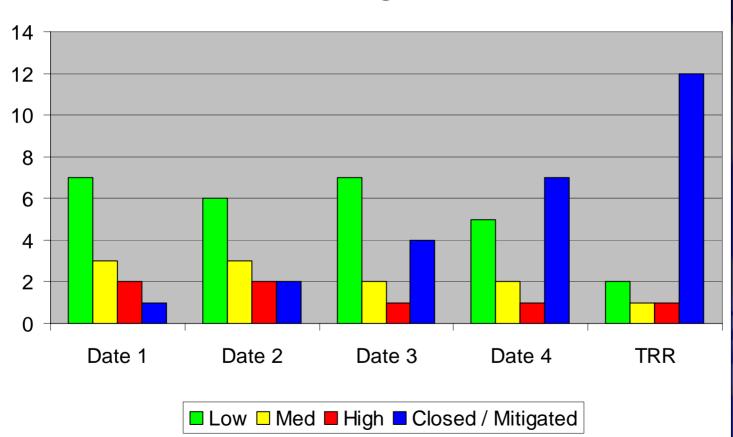
- Review established Requirements Correlation Matrix (RCM)
 - Ensures test requirements has direct link to source requirements
- For each requirement ask:
 - Is it quantified?
 - Is it verifiable/testable/measurable?
 - What verification method?
- If need be, send requirements back to program manager for clarification
- For risky verifications/testability, send risk to Risk Management Team


Step 4: Develop Test Metrics

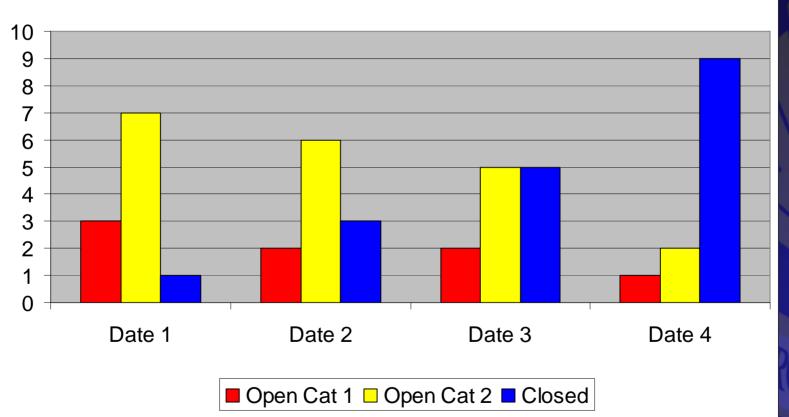
Three minimum metrics

- Test Requirements Metric
- Test Risk Management Metric
- Deficiency Report Metric
 - Required only during the Test Execution Phase
- Update the RCM
- Metrics shown to management at quarterly Weapon Systems Review
 - Shown elsewhere as required (PMRs, PDRs, CDRs, TIMS, TRRs, etc)

Test Requirements Metric


Test Requirements Metric

☑ Total # of Requirements ☑ Quantified ■ # Verifiable ■ Resource Assigned


Test Risks Management Metric

Test Risks Management Metric

Deficiency Metric Report

Deficiency Report Metric

Step 5: Create TES or TEMP

- Tailored to size of project
- Documents strategy for conducting test
- Documents Roles and Responsibilities
 - How Redlines handled
 - How DRs handled
 - Use of TIMs
 - Scheduled Test Events (TRB, TRR, etc..)
 - Mishap Accountability
- Rationale for test verification methods (inspection, analysis, demonstration,test)

Step 6: Integrate Test Plan IMS & Funding

- Program Manager will:
 - Ensure the test program schedule in the TES/TEMP is incorporated into IMS
 - Work with contractor's processes/timelinesnot duplicative
 - Ensure appropriate test program funds are available to support TES/TEMP
 - Schedule technical interchange meetings as required

Step 7: Technical Reviews

- Testing Addressed in Periodic Reviews
 - System Requirements Review
 - System Design Review
 - Preliminary Design Review
 - Critical Design Review
 - Safety Reviews
- ITT meets periodically to review that all requirements are:
 - Tested
 - Quantified
 - Verifiable/testable/measureable
 - Resourced
 - Risks mitigated

Step 8: Update TES/TEMP

- Update at, or immediately after, each review
- Update RCM as required
- Update all metrics

Step 9: Test Readiness Review (TRR)

- TRR required before any formal test
- OI has a clear checklist for TRR
 - Approved test procedures
 - Test scheduled defined
 - Hardware installation complete
 - Software configuration is stable (passed FQT)
 - Support requirements defined and scheduled
 - Test team identified
 - User training integrated
 - Mishap accountability identified
 - Etc.

Step 10: Test Execution

- Execute the Test
- Document Deficiencies
 - Important to have a formal process
 - Hold deficiency reviews
 - Correct deficiencies
 - Retest the system

DR Quad Chart

E-4B 1677 MB1 Deficiencies VHF/FM Red to Black Audio (DRB-139)

Deficiency – Category I

Description

- During transmissions via VHF/FM through the Black Switch w/ the radio in secure mode the signal bleeds over onto the unsecure channel
- Not E-4 unique issue
 - Proposed solution part of s/w release for all fielded radios

Requirement

Derived security/certification requirements

Exit Criteria

 Transmit via VHF/FM through the Black Switch w/the radio in secure mode without the signal bleeding over onto the unsecure channel

Technical

Actions to date

- Identified after the installation of the new VHF/FM radio
 - Issue identified to radio manufacturer (Wulfsberg)
 - Wulfsberg identified a s/w solution
- Minor software anomalies discovered in prototype testing

Way Ahead

- Wulfsberg setting up representative test lab
- Scheduled to complete lab testing by 9 Dec 05
- A/C integration testing scheduled by 16 Dec 05

Funding

Funding: Solution covered under warranty

POC: John Smith (E-4 SPO) DSN: 336-2547

Technical POC: Jim Barnaby

Schedule

Aggressive: 28 Nov 05 Moderate: 6 Dec 05 Low Risk: 6 Jan 06

Updated 16 Nov 05 CU

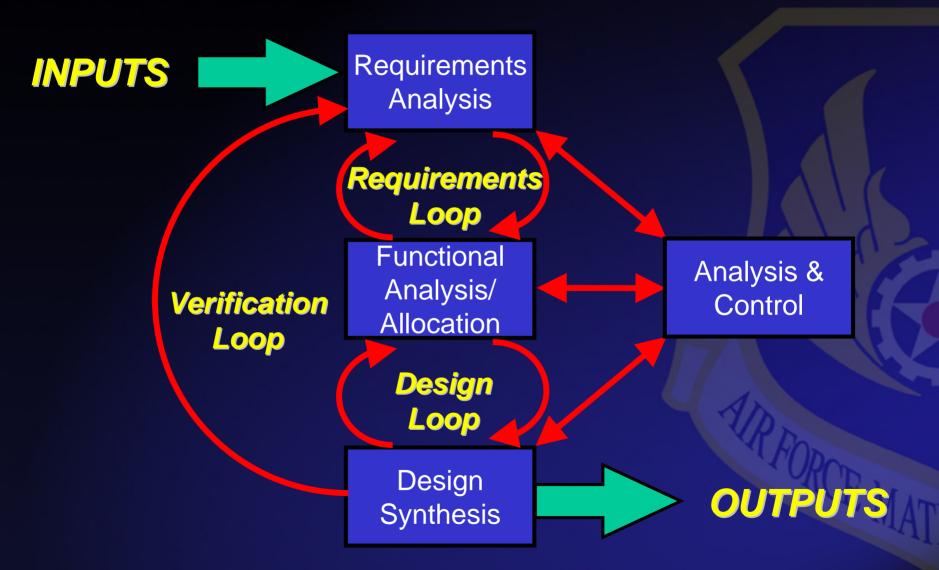
Step 11: Test Report and Lessons Learned

- Tests are not snowflakes
- Lessons Learned repository contains:
 - Possible tests to consider
 - Potential test plans
- Repository is not program specific, but for entire organization
- Future plans are to make the lessons learned repository a database with keyword searches

What's Next

- Continue implementation throughout organization
- Continue Measure/Track results
- Populate Lessons Learned database
- Refine as needed
- Document successes
 - We are having some!

Test Management can be implemented, applied AND make a difference


Summary

- 727th ACSG developed grass-roots means to implement Test Management as part or our Systems Engineering in Sustainment Environment
- Clear-cut, tangible processes steps for the working-level
- Metrics to measure progress for management
- It works

In Place and In Use Now

Questions?

Basic Systems Engineering Process

