

Generic Sensor Model

Stanley N. Hack, D.Sc. Keith Josef, Ph.D. Philip Nation Vinay Shah Paul Juckiewicz Yena Park Jeri Anne Moses Bradly Pietras Walter Osadciw

25 October 2007

LOCKHEED MARTIN

MS-2 Radar Systems Syracuse, New York

The Generic Sensor Model (GSM) is a collection of core software components (classes) used as the foundation for developing radar simulation models.

- Model Description
- Operating Modes
 - o Stand-Alone
 - o System-of-Systems
- Model Components
- Model Flow
- Model Flexibility
 - o Extensibility
 - o Changeable Components
 - o System Adjustable Parameters
- Analyses

The Generic Sensor Model (GSM) is a collection of core software components (classes) used as the foundation for developing radar simulation models.

<u>MODEL UTILITY</u>

- Scenario Testing
- Algorithm Testing and Comparison
- Interoperability Evaluation
- Mission Planning

The Generic Sensor Model (GSM) is a collection of core software components (classes) used as the foundation for developing radar simulation models.

FEATURES

- Event Driven
- Parameter Based
- Scalable
- Modular
- Extensible Uses Object Oriented Design (C++ based)
- Can Incorporate Tactical Software
- Can be Incorporated into system-of-systems environment (High Level Architecture (HLA) interface)
- Fidelity configurable from low to high
- Unclassified

 \rightarrow

The Generic Sensor Model (GSM) is a collection of core software components (classes) used as the foundation for developing radar simulation models. <u>COMPONENTS</u>

- HLA Interface
- Beam Scheduling
- Ray Trace Beam Propagation
- Detection Processing
- Tracking
- Cueing
- Communications
- Data Logging
- Dynamic Environment (Atmosphere, Weather, clutter)
- Terrain maps (DTED)

OPERATING MODES

Stand-Alone Mode

- All inputs via XML and data files
- All outputs to log files
- Operates on a single Windows[™]-based platform

System-of-Systems Mode

- HLA federated configuration
- Operates in Lockheed Martin's Integrated Missile Defense Testbed (IMDT)

Integrated Missile Defense Testbed (IMDT™)

IMDT Addresses All Phases of BMDS Mission

- 1. Plan the Battle
- 2. Fight the Battle
- 3. Assess the Battle

- Integrated Defense Planner (IDP)
- IMDT Federation
- Post-Simulation Analyses

IMDT Provides Accurate BMD Planning, Performance And Evaluation Support

Integrated Missile Defense Testbed (IMDT™)

IMDT Federation

- Distributed high-fidelity system-of-systems modeling and simulation testbed for BMD
- HLA and the GV-Net[™] allow distribution of the simulation models to their developers' (subject matter experts') locations
- Includes sensor, weapon systems, communications, and C2BMC high-fidelity models. System controller, analysis suite, and visualization.

IMDT™ Distributed Network

Copyright 2007 Lockheed Martin Corporation

IMDT Video

Generic Sensor Model Flow

- Physics-Based Components
 - o Beam scheduling
 - o Beam propagating
 - o Signal calculations
 - o Tracking
- Effects-Based Components
 - o Measured state
 - o Single-scan correlation
 - o Multi-scan correlation

Generic Sensor Model Components

Generic Sensor Model Components

Flexibility and Extensibility

• Beam Scheduler

- 0 Phase / Rotate
- o Phase / Phase
- o Phase / Phase / Rotate
- o Track Filter

• Kalman Filter

- o Interacting Multi-Model (IMM)
- o Non-Linear Ballistic Model
- Model Extensions
 - o External Cue
 - o *IFF*

Generic Sensor Model Parameter Examples

- Sensor
 - o Transmitter power, duty cycle, ...
 - o Antenna size, element count, ...
- Waveforms
 - o **Selection**
 - o Beam Parameters frequency, bandwidth, ...
- Tracker Characteristics
 - o Initial Conditions weights, ...
 - o **Operating Parameters time constants, ...**
- Threats
 - o **Number**
 - o **Characteristics**
 - o **Trajectories**

Generic Sensor Model Analyses

- Component Performance Analyses
 - 0 Detections SNR, P_D, ...
 - o Tracker initiate track, drop track, ...
- Algorithm Analyses
 - o Baseline updates
 - o Extended functionality
- Mission Planning
 - o Assumption verification
 - o Parameter development
- Scenario Analyses
 - o Targets number, location, type, ...
 - 0 Assets number, location, type, ...
 - o Communications latency, availability, ...

Generic Sensor Model Analysis Examples

- Stand-Alone Operating Mode
 - Performance assessment
 - Track initiation
 - Coverage
 - Detection probability
 - Enhanced/Modified Capability evaluation
 - Tracking
- System-of-Systems Operating Mode
 - Interoperability

Stand-Alone Mode Performance Example

- Individual missiles launched throughout the region of interest
- Missiles impact one of two cities (white, pink)
- Radar at a specified location

Stand-Alone Mode Performance Example Video

NOTE: All data are notional.

Copyright 2007 Lockheed Martin Corporation

Stand-Alone Mode Enhanced Capability Example

- N Monte-Carlo runs using Tracker 1
- N Monte-Carlo runs using Tracker 2
- Evaluate
 - Probability of track initiation
 - Track initiation time
 - Track duration
 - Track drop time
 - Track quality
 - ...

NOTE: All data are notional.

Interoperability Video

NOTE: All data are notional.

<u>Summary</u>

- Generic Sensor Model (GSM) provides a flexible, extensible framework for instantiating sensor models
 - o **Object-Oriented design**
 - o Parametrically driven
 - o Stand-Alone mode
 - o Federated mode
- Integrated Missile Defense Testbed (IMDT) provides a distributed system-of-systems environment
 - o High-Level Architecture (HLA)
 - o Global Vision Network (GV-Net[™])
 - o Addresses all phases of the BMD mission
 - Plan the Battle
 - Fight the Battle
 - Assess the Battle

Lockheed Martin MS2, Syracuse, NY

