ASC Engineering Directorate

Integrity - Service - Excellence

Sound Systems Engineering,
Assures Proper/Early
Producibility

U.S. AIR FORCE

Dr. Thomas F. Christian, Richard Stepler, Hamid Akhbari Aeronautical Systems Center NDIA, 10th Annual Systems Engineering Conf. 23 Oct. 2007

Manufacturing & Quality in Systems Engineering

• Why are we here?

- Are there really deficiencies in our Systems Engineering Process or is there a problem in execution?
- What metrics are our critics using to gauge our performance?
 - Failures to make rate, cost, and schedule in production
 - Unresolved engineering issues from the development phase manifest themselves as cost and rate failures detected during LRIP and Production
- Fixing the root cause of manufacturing problems means including manufacturing as a mandatory discipline in the System Engineer tool set during design and development
- My perspective on the Past, Present, and Future of Manufacturing and Quality involvement in Systems Engineering

Overview

• Where we were **>**

• Where we are **>**

• Where we are going ▶

Where We Were: M&Q in America

- Ahhh...."The Good Old Days"?
 -Were they as "good" as we remember...
 - Separation of design and manufacturing functions
 - Transition to production always problematic
 - LRIP created to address problem but only addressed symptoms
 - Major redesigns of components required to achieve desired production rates
 - Producibility changes euphemism for "we can't afford to build what you designed"
 - Cost high: low first pass yields and traveled work
 - Schedule fluctuations due to excessive "work in process"
 - Quality by inspection
 - The most expensive and least effective approach
 - Build-test-fix-retest-----who pays for quality

Where We Were: M&Q in America

- Need proof?
 - Back in the 1970s, how long did your domestic car last?
- Corporate commitment to quality and the customer's satisfaction?
 - "What's good for General Motors is good for the country"
- Then came competition from Japan, with help from Deming
- The American auto industry wakes up
 - Recognized Japan's focus on customer satisfaction and quality
- Today: we expect our cars to work every time....all the time
- Toyota is still at the forefront of quality
 - Their "secret" focus on quality and producibility during design

THE W. EDWARDS DEMING INSTITUTE®

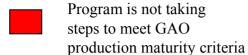
71. Edwards Deming

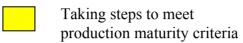
Where We Are: M&Q in America

- <u>FACT</u>: The American Defense Aerospace Industry has produced, unquestionably, the finest weapon systems in the world
 - But at what cost? How long does it take? How much "cost of quality" have we shifted to operations and maintenance?

"...DoD is simply not positioned to deliver high-quality products in a timely and cost-efficient fashion."

GAO (HASC) Testimony <u>GAO-06-585T</u> "Actions Needed to Get Better Results on Weapons Systems Investments" 5 April 2006


"In 2001, The <u>Average Weapon System Acquisition</u> Program Experienced a 36% <u>Cost Overrun</u> and <u>Schedule Delay</u> of Two Years" – *Dr. Marvin Sambur*


M&Q in the DoD:

Who We Were Then.... and Who We Are Now

- THEN....1975 to 1985
 - M&Q Organization
 - Represented at every acquisition level in DoD
 - Had independent M&Q evaluation of program with veto power
 - Large numbers of experienced people
 - Career field with opportunities
 - Effective Mentoring
 - Tribal knowledge and well documented Specs and Standards
- NOW.....2001 to present
 - Not represented at every acquisition level in DoD
 - No seat and no vote on program readiness
 - Under-represented at most locations
 - No representation at some locations
 - M&Q Specs and Standards cancelled
 - Limited mentoring opportunities and tribal elders retired

GAO Findings: Production Maturity

Program demonstrates sufficient production maturity

<u>Program</u>	<u>2003</u>	<u>2004</u>	<u>2005</u>	<u>2006</u>
JPATS		n/a	n/a	n/a
ABL	n/a			n/a
F/A-22				
JSF	n/a	n/a		
Global Hawk	n/a			
JHMCS	n/a		n/a	n/a
Predator B	n/a			
B-2 RMP	n/a			
V-22				

Color ratings based on GAO opinions Source: GAO Quick Look reports for 2003, 2004, 2005, 2006

Defense Science Board ManTech Study

- DSB was tasked by SAF/AQ to evaluate the ManTech program
- Released report in February 06
- Much of the report pertains specifically to ManTech
- Portion of the report addresses global acquisition manufacturing issues
 - Assessing program readiness for production....(suggested using the new Manufacturing Readiness Levels (MRLs), more on the MRLs Later)
 - Workforce Expertise clearly addresses the entire DoD acquisition workforce

Complete DSB report is located at:

http://www.acq.osd.mil/dsb/reports/2006-02_Mantech_Final.pdf

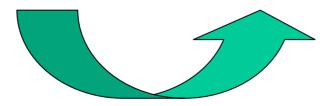
Defense Science Board ManTech Study

Findings:

- Manufacturing talent in the DoD workforce, and its supporting industrial base, has and continues to decline
- Not enough people (both at working level and in leadership positions)
 understand the processes involved in developing and manufacturing defense
 systems

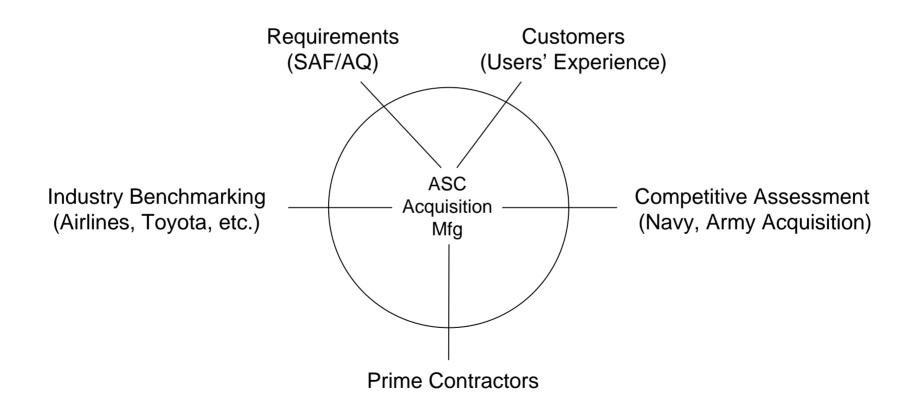
Recommendations to correct knowledge deficiency:

- Create policy requiring support for programs such as ManTech
- Implementation of MRLs as part of DoDI 5000.2


War-fighter Expectations

- 1. Avoid cost overruns, performance shortfalls, and schedule slips typically manifested during production
- 2. Improve quality and avoid surprises
- 3. Ensure affordability and producibility
- Identify all potential MFG risks during transition from development to production and establish risks mitigation plans
- 5. Provide rapid response to emerging needs, e.g., readiness (includes combat ops, surge, parts and spares, etc.)

Have you met your customers expectations?


Swinging Pendulum of Acquisition Reform

- •Where we were was not cheap....but it was defined
- •Where we are is neither cheap nor defined
- •The faster..better..cheaper "acquisition reform" pendulum... for us a wrecking ball....left M&Q vulnerable
- •We can anticipate the return swing but must not let it drive us back to the old approach.
- Let's tailor the "return trip"

ASC/EN Response to War-Fighter Concerns

 ASC/ENSM plans to conduct a 360° evaluation to identify solutions and best practices

- Government acquisition strategies do not require an in-depth risk analysis for manufacturing during product design.
- Government does not specify the right deliverables in their contracts.
- 3. Benchmark other industries to get a better picture on MFG related issues during product development and risk mitigation plans to address them.
- 4. Assess production readiness in a meaningful way.
- 5. More emphasis on suppliers during product development.

- Government acquisition strategies do not require an in-depth risk analysis for manufacturing during product design:
 - Establish effective source selection criteria to emphasize producibility and affordability
 - Identify incentives for contractors to focus on producibility and affordability during product development.
 - More MFG/QA emphasis during ASP reviews
 - Strong Government advocate/champion are needed
 - There is a gross lack of knowledge and personnel in this area
 - Hold PMs and chief engineers accountable
 - Educate Government PMs with potential MFG/QA risks and their impacts to the overall system life cycle cost
 - Make long-term decisions thoroughly considering all production risks down the road

- 2. Government does not specify the right deliverables in their contracts:
 - Government needs to verify that the contractor has the right processes in place to deliver the right product
 - Government does not use the right metrics to measure performance
 - Make the contractor demonstrate that they have a solid production plan
 - Require the prime to demonstrate control of MFG processes during development
 - Specify proper MFG/QA contractual requirements in development contracts

- 3. Benchmark other industries to get a better picture on MFG related issues during product development and risk mitigation plans to address them:
 - Consider world-class performers in other industries
 - Think outside the box
 - Develop lessons learned
 - Evaluate commercial programs and practices as well as the FAA
 - Consider having budget for "Producibility Improvement Plan" (PIP)

- 4. Assess production readiness in a meaningful way:
 - Government needs to develop better MFG transition strategies
 - Willoughby templates (Transition from Development to Production) are useful tools
 - PRRs are not focusing on the right parameters. Many programs do not conduct full blown PRRs like they once did
 - MRLs will be a useful tool once up and running
 - Government PMs should be required to develop MFG exit criteria for milestone reviews
 - Industry recognizes "Production Plans" once required by the Government for most programs as a useful tool

- 5. More emphasis on suppliers during product development:
 - The vast majority of quality related issues come from lowertier suppliers. Ensure that the prime's processes for management of their suppliers are solid
 - Properly manage requirements flow-down to lower-tier suppliers
 - Require suppliers participation on IPTs during product development
 - Ensure supplier participation in the systems engineering process, in particular MFG processes and procedures
 - Develop predictive indicators to assess supplier's "internal health"
 - Use of common metrics

Where We Should Be Going

• The way forward.....

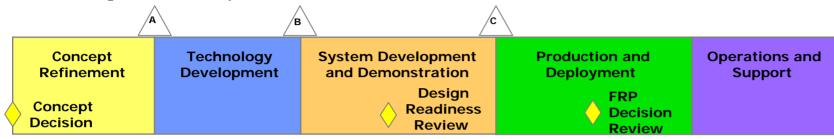
- Internally: Manufacturing and Quality must be the responsibility of design engineers and be considered early in the development process
- Externally: Supplier Management...engineers at primes must partner with suppliers to achieve maximum affordability
- To help with all of it: The M&Q tool set:
 - Manufacturing Development Guide-Available now
 - Manufacturing Readiness Levels-Draft available now
 - Manufacturing and Quality Integrity Program-Available soon

Systems Engineering – Ensure that design meets requirements and *is producible*

Mfg/QA helps SE meet producibility, OSS&E, and Airworthiness Design requirements

M&Q Tool Set Manufacturing Development Guide

Best Practices


http://engineering.wpafb.af.mil/mdg/mdg.asp

- Mfg Capability/Risk Mgt
- Production Cost Modeling
- Key Suppliers
- Key Characteristics and Processes
- Variability Reduction
- Virtual Mfg
- Design Trade Studies
- Product/Process Validation
- Process Control and Cont Improvement
- Factory Efficiency
- DMSMS

- Developed by a joint industry Government team, improved over the past 10 years
- Recognized aerospace industry guide for describing the role of Manufacturing and Quality in the Systems Engineering process
- Available at: http://engineering.wpafb.af.mil/mdg/mdg. asp

M&Q Tool Set Manufacturing Readiness Levels

Defense Acquisition Life Cycle Framework

Technology Readiness Levels

TRL 1-3	TRL 4	TRL 5	TRL 6	TRL 7	TRL 8	TRL 9

Manufacturing Readiness Levels

MRL 1-3 MRL 4 MRL 5 MRL 6 MRL 7 MRL 8 MRL 9 MRL 10
--

MRLs address topics such as:

- Parallels Technical Readiness Levels
- OSD planning to make MRL assessments a milestone requirement
- Available at:

https://acc.dau.mil/CommunityBrowser.aspx?id=18231

Producibility
Key Characteristics
Material Availability
Production Simulation
Process Controls
Tooling

M&Q Tool Set M&Q Integrity Program

This DRAFT, dated 25 August 2006, prepared by AF-11, has not been approved and is subject to modification. DO NOT USE PRIOR TO APPROVAL. (Project SESS-2006-001)

NOT MEASUREMENT SENSITIVE

MIL-HDBK-DRAFT DATE

DEPARTMENT OF DEFENSE HANDBOOK

MANUFACTURING AND QUALITY INTEGRITY PROGRAM

- Contains the practices described in the Manufacturing Development Guide
- Includes suggested contractual and/or Systems Engineering Plan requirements and verifications
- Will be posted on the ASC/EN public Website

AMSC XXXX AREA SESS

Producibility...M&Q's Contribution to Systems Engineering

- America's Defense Aerospace Industry is #1 in the world. However...
 - Are we be able to buy desired quantities?
 - How many B-2s were originally planned? F-22s? JSFs?
- If we can't figure out a way to build better systems cheaper, we will fulfill Norm Augustine's prophecy:
 - "In the year 2054, the entire defense budget will purchase just one aircraft. This aircraft will have to be shared by the Air Force and Navy 3-1/2 days each per week except for leap year, when it will be made available to the Marines for the extra day."
- My primary focus is to integrate quality and producibility early in the Systems Engineering process (see the ASC, MDG)

Encouraging Steps Forward

- Tri services committee being formed at the SES level
- NDIA committee on "Manufacturing & Quality Assurance formed as government/industry forum.
 - If you share my interest in this subject, join me on the committee
- Fixing the root cause of manufacturing problems means including manufacturing as a mandatory discipline in the Systems Engineering tool set during design and development

Summary: We Know We Are There When.....

- The process used to manufacture a part is given equal consideration as the functionality of the part
- Product performance and producibility are equal in the risk analysis trade studies during product development
- The "chiefs" of design, manufacturing and logistics have equal votes on critical design decisions during development
- "Design" executives are held accountable for unit production cost and cost of quality decisions
- M&Q metrics are present in entry and exit criteria for each phase of the acquisition life cycle
- Integrating people, processes, and technology using the System Engineering Process proven effective by world class producers

As good systems engineers, our commitment to M&Q starts in design

Thank you for your time and attention

Thomas.Christian@wpafb.af.mil

Phone: 937-255-1826