

10th Annual NDIA Systems Engineering Conference 22-26 Oct, 2007, San Diego, CA

Applying Design of Experiments (DOE) methodology to Sortie Generation Rate (SGR) Evaluation

Josh Tribble MILITARY ANALYST AVW TECHNOLOGIES

Phone: 757-361-9587 E-mail: <u>tribble@avwtech.com</u> 860 Greenbrier Circle, Suite 305 Chesapeake, VA 23320 http://www.avwtech.com

Agenda

- Introduction
 - Acquisition humor
 - The Integrated T&E Challenge
- Intro to Design of Experiments
- SGR Assessment Methodology
 - Overview of SGR Assessment to date
 - SGR Assessment objectives, MOEs, factors
 - SGR Testbed Assessment Design Factors / Run Matrix
 - SGR Live Testing Validation
- Benefits of DOE over single scenario based analysis
- Conclusion / Q&A

NOTE: My remarks are intended to spur thought on improving how we as testers can do business better to support the warfighter. While I hope this aligns well with DoD and Services T&E initiatives, I am not representing any government agencies' official position.

Acquisition 101?

How do we avoid this?

Intro to DOE

Background of DOE

DOE originated in the field of agricultural studies in the 1930s by R.

- Fisher, building on W.T. Gossett's work at Guinness Brewery—Brilliant!
- Used throughout industry in industrial experiments, process improvement, statistical process control
- USAF has significant experience in use of DOE across numerous programs; Navy is beginning to implement
- DOE methodology is used to interrogate a process, improve knowledge of how the process works, and identify factors and interactions affecting variability of performance outcomes.

DOE Process Goal / Benefits

Compared to other systematic methods DOE designs:

- Yield better process understanding
- Can be planned and analyzed faster

- Cheaper using between 20-80% of usual runs/tests/resources
- Better exploration across range of performance—depth and breadth of testing
- Challenge assumptions and demonstrate real performance
- Better way to design and test complex systems

DOE Process Outline <u>4 Basic Steps</u>

Project description and decomposition

- Problem statement and objective of experiment (test)
- Response variables, and potential causal variables Ishikawa fish bone.

Plan test matrix

- Determine constraints, prioritize factors, and select statistical design (2^K vs. 3^K vs. mixed, Taguchi vs. classical arrays, full vs. fractional, non-linear effects?, replications?, blocking?)
- Write the test plan with sample matrices, profiles, and sample output; run sample analysis.
- Produce observations –random run order & blocked against unknown effects
 - Block runs to guard against uncontrollable unknown effects as needed.

Ponder the results

- Analyze and project data; draw conclusions, redesign test as necessary and assess results.
- Perform "salvo testing" (test-analyze-test); screen large # of factors then model

SGR Assessment Methodology

<u>SGR Assessment</u> <u>Requirements</u>

• SGR Key Performance Parameter

	THRESHOLD	OBJECTIVE		
Sustained SGR	Average of 160 operational combat equivalent aircraft sorties in 12 hours of launching per day over 30 days (26 Flying and 4 Non-Flying Days as specified in the Design Reference Mission (DRM) – total cycle of 4160.	Average of 220 operational combat equivalent aircraft sorties with 12 hours of launching per day sustained over 30 days (26 Flying and 4 Non-Flying Days as specified in the DRM) – total cycle of 5720.		
Surge SGR (requires crew augment)	Average of 270 operational combat equivalent aircraft sorties generated during each successive 24-hour period over 4 continuous days.	Surge: average of 310 operational combat equivalent aircraft sorties generated during each successive 24- hour period over 4 continuous days.		

• Other Measures of Performance: cycle times, task timing, launch and recovery cycles, resource usage, crew fatigue levels, fuel states/rates, etc.

SGR Assessment Testbed

 M&S testbed captures times and actions associated with preparing, launching, and recovering sorties per the DRM

- M&S matured and validated over time prior to runs for score
- Live test used for validation once ship is delivered and aviation certified

SGR is a function of

- Launch Cycle/Interval Timing
- Recovery Times/Intervals
- Mission Planning Timing
- Aircraft Recovery Time Which Encompasses:
 - Fueling Time
 - Ordnance Handling Times
 - Aircraft Movement/Spotting Times On The Flight Deck
 - Aircraft Movement/Spotting Times In The Hangar Bay
 - Aircraft Availability

TECHNOLOGIES

SGR Assessment Analysis

Objectives

- Determine average SGR over DRM to meet KPP requirement
- Determine active factors influencing the variability & overall outcome
 - Measure % sorties completion rather than binomial pass/fail
 - Each day in the DRM treated as a single design point due to interdependencies of events within that day
- Provide the fleet with an analytical model showing probability of meeting a given airplan based on its size, mission composition, environment, and any other active factors

% Airplan _ Sorties _ Completed = $\frac{Daily _ sorties _ completed _ succesfull y}{Airplan _ sorties} x100\%$

- Allows equal comparison of the 4 T/O surge/sustained requirements across all factors
- Continuous dependent variable provides more statistical power than pass/fail
- Supports more robust assessment of capes and lims

SGR Factor Selection

Experimental control factors:

- Environmental
 - Sea/Winds: state 1 vs. 3

- Visibility/Sky Cover: Clear Skies (Case I) or Cloudy/Night (Case III)
- Time of day: midday or midnight (for 12 hour ops, N/A for 24 hour ops)
- Systems:
 - Availability: 100% & actual (for CVN-21 systems and aircraft)—allows for analysis of impact of equipment failures
- Mission
 - Sortie Size: Threshold & Objective levels from the DRM
 - Sustained and Surge Mission (12 vs. 24 hr ops (with augmented crew))
 - Operation day: early and late in ship on-station operational period; expect to interact with availability for system failures and also translates to possible crew fatigue
 - Airplan mission mix: early/late DRM days representing different ordnance mix;
 - Mission mix and operation day

SGR Factor Selection (cont')

Controllable Factors held constant:

- Underway Replenishment
 - Not a factor of SGR but presumed to occur on assigned days or fuel and ordnance will not be available for the planned flight days)
- Aircrew augmentation
 - Confounded with mission type assumed normal crew for sustained operations and augmented crew for surge missions

Measurable Noise Factors

- Other environmental factors not controlled (if in test / model)
 - Temperature extremes
- Specific metrics in the subordinate models driven by the main inputs, such as:
 - Crew fatigue (driven by the mission day)
 - Resource availability
 - Number of aircraft available
 - Weapon skids available
 - Timing for critical tasks, etc.

SGR Factor Selection (cont')

- Design factors:
 - Factors with highest expected influence listed first
 - Important when setting up fractional factorial matrices—usually easier to resolve factors and interactions
 - Setup for M&S only; cannot test all of these in live testing
 - Requires M&S improvements
 - Need buy-in for "excursions" above threshold
 - High levels force the "system" towards a higher failure rate to see more variation in response

Sett Fact	ing tor	(Low) -1	(Center Point) 0	(High) +1	
Α	Surge/ Sustained Operations	Sustaine d (12 Hr ops)	N/A	Surge (24 Hr ops w/augment)	
В	Sortie Size (T/O)	Thres- hold	Halfway btwn	Objective	
С	operational day	Early (1/4 or 5/30)	Mid (2/4 or 15/30)	Late (4/4 or 26/30)	
D	Availability	100%	Halfway btwn	actual/ spec	
E	Visibility/ Cloud Cover:	Clear/ Case I	Partly Cloudy/ Case II?	Cloudy/ Case III	
F	Seakeeping motion effects	5 kts/SS1	12 kts/SS2	20 kts/SS 3	
G	Time of day	Day	Dusk?	Night	
Η	Mission Day	Early	Mid	late	

<u>SGR Testbed Run</u> Assessment Design

- Full factorial requires 2⁸ or 256 runs
 - Unnecessary since many effects are inactive
- Resulting test matrix is a resolution IV 2⁸⁻⁴ fractional factorial of 16 runs + 8 additional runs for central composite design
 - Some interactions are confounded but can be resolved
- Model DRM days per the assigned settings and evaluate SGR Compl %
- "salvo test":
 - -Runs 1-8, then analyze for effects
 - -Runs 9-16, then reanalyze for effects
 - Perform center points to check for linearity
 - If necessary, run CCD (face points) for non-linear effects

Run		Blk	Α	В	С	D	E =	F=	G=	H=
1	Factorial	1	-1	_1	_1	_1			_1	
י ר	Factorial	1	-1	-1	-1	-1	-1	-1	-1	-1
2	Factorial	1	-1	-1	-1	+ I - 4		T	T	-1
3 1	Factorial	1	-1	-1	+1	-1	-1	+1	+1	+1
4	Factorial	1	-1	-1	+1	+1	+1	-1	-1	+1
5		1	-1	+1	-1	-1	+1	-1	+1	+1
6	Factorial	1	-1	+1	-1	+1	-1	+1	-1	+1
/	Factorial	1	-1	+1	+1	-1	+1	+1	-1	-1
8	Factorial	1	-1	+1	+1	+1	-1	-1	+1	-1
9	Factorial	2	+1	-1	-1	-1	+1	+1	-1	+1
10	Factorial	2	+1	-1	-1	+1	-1	-1	+1	+1
11	Factorial	2	+1	-1	+1	-1	+1	-1	+1	-1
12	Factorial	2	+1	-1	+1	+1	-1	+1	-1	-1
13	Factorial	2	+1	+1	-1	-1	-1	+1	+1	-1
14	Factorial	2	+1	+1	-1	+1	+1	-1	-1	-1
15	Factorial	2	+1	+1	+1	-1	-1	-1	-1	+1
16	Factorial	2	+1	+1	+1	+1	+1	+1	+1	+1
17	Center rep 1	3	-1	0	0	0	0	0	0	0
18	Center rep 2	3	-1	0	0	0	0	0	0	0
19	cd face point -b	4	-1	-1	0	0	0	0	0	0
20	cd face point +b	4	-1	+1	0	0	0	0	0	0
21	bd face point -c	4	-1	0	-1	0	0	0	0	0
22	bd face point +c	4	-1	0	+1	0	0	0	0	0
23	bc face point -d	4	-1	0	0	-1	0	0	0	0
24	bc face point +d	4	-1	0	0	+1	0	0	0	0

SGR Live Testing Validation Test Design

- Live test conditions and cost (potentially \$100M?) limit amount of live test and the conditions
- Focus on validating specific test points of interest and confirm within the M&S runs for score

Factor		-1	0 +1		Rationale	
Α	Surge/ Sust. Ops	Sustained	N/A	Surge	Both operations can be run	
В	Sortie Size (T/O)	Threshold	(T+ O)/ 2	Objective	A mix of sortie sizes can be run	
С	Operational day	Early	Mid	Late	No means of imposing a late day due to cost	
D	CVN-21/A/C Ao	100%	Halfway	Actual	Actual equipment Ao	
Ε	Cloud Cover	Actual conditions?				
F	Sea-State	Actual conditions?				
G	Time of day	Actual conditions?				
Η	DRM Mission mix	Early	Mid	Late	Factor is probably inactive so randomly assign	

SGR Live Testing Validation Test Design (cont')

• Final Test Matrix with settings:

Test Case	A: Ops Type	B: Sortie Level	Actual (# Sorties)	H: DRM Mission Day	Notes
1	Sustained	Threshold	160	5	Priority
2	Sustained	Objective	220	26	Priority
3	Surge	Threshold	270	26	Priority
4	Surge	Objective	310	5	Priority
5	Sustained	Halfway btwn	190	15	Additional run for midpoint
6	Surge	Halfway btwn	290	15	Additional run for midpoint
7	Sustained	Threshold	160	26	Additional run for alternate mission mix
8	Sustained	Objective	220	5	Additional run for alternate mission mix

- Recommend run during Joint Task Force Exercise to ensure combat ready crew & systems
- Some analysis of variance can be run directly but main objective is to compare day for day with M&S results (including V&V of lower level measures within the specific process models)
- Runs 1-4 are priority; select additional runs based on M&S results

<u>SGR Testbed Assessment</u> <u>Sample Data Analysis</u>

- Response surface plot across factors of interest showing response & interactions
- Table of plan vs. predicted actual SGR Completion Rate for factor settings of interest -- shows SGR completion % falling off as too many are sequenced

 demonstrates how analysis can describe ship caps & lims, not just a pass/fail grade for a KPP tested only to threshold

Benefits of DOE

CONCLUSION

DOE methodology:

- -may significantly **reduce the required runs** for Testbed Assessment and live test validation while...
- -providing a <u>more robust process</u> for statistical analysis of variance to determine where the ship design can and cannot support a given air-plan under the other conditions
- -supports robust & efficient integration of M&S development, testing, VV&A, & evaluation

• <u>DOE is:</u>

- -a smarter way of doing testing
- -can provides superior knowledge to the systems engineers
- -something all testers & systems engineers should become familiar with!
- **QUESTIONS**?