

DoD Systemic Root Cause Analysis

Dave Castellano

Deputy Director, Assessments and Support

Laura M. Dwinnell

Systemic Analysis Team Leader

SYSTEMS & SOFTWARE ENGINEERING
Office of the Deputy Under Secretary of Defense
for Acquisition and Technology

23 October 2007

Systems and Software Engineering... What are we all about?

Acquisition Program Excellence through sound systems and software engineering...

- Help shape portfolio solutions and promote early corporate planning
- Promote the application of sound systems and software engineering, developmental test and evaluation, and related technical disciplines across the Department's acquisition community and programs
- Raise awareness of the importance of effective systems and software engineering, and drive the state-of-the-practice into program planning and execution
- Establish policy, guidance, best practices, education, and training in collaboration with academia, industry, and government communities
- Provide technical insight to the leadership to support effective and efficient decision making

Based on USD(AT&L) 2004 Imperative...

"Provide context within which I can make decisions about individual programs."

NDIA-SRCA v1.01 Page 2 of 32

Providing Value Added Oversight & Support

Tactical, Program and Portfolio Management

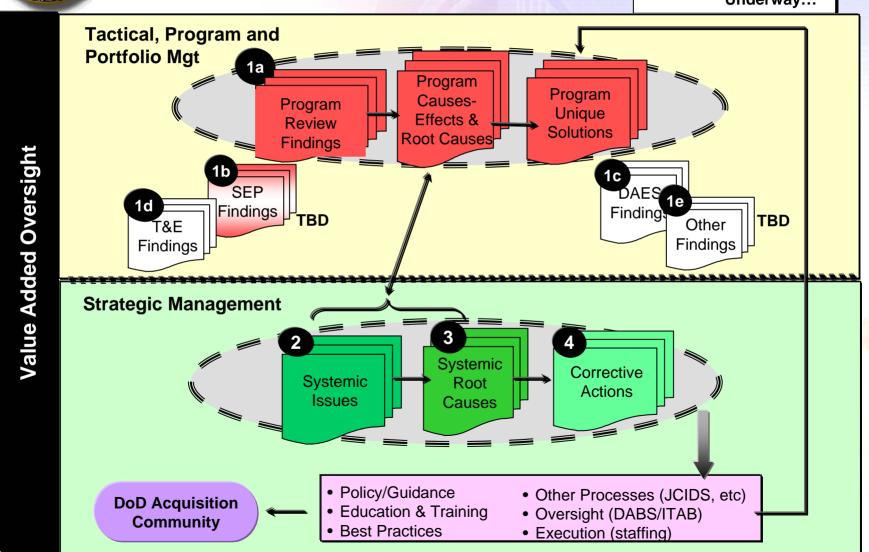
Acquisition Leadership PEOs & PMs... AS Results • PSR **Achieved thru** • AOTR Improved Acquisition Decision Open Communication/Debate • SEP Making thru... "a" Insight & Information Sharing • TFMP Greater Program Transparency Understanding of • DAES Acquisition Insight Consequences · Data Driven, Fact-based Improved Program Information Execution thru... Synthesis, **Program Unique** Recommendations

Strategic Management

DoD Acquisition Community Improved Acquisition Support to Warfighter "A"

- Systemic Issues & Risks
- Systemic Strengths & Indicators

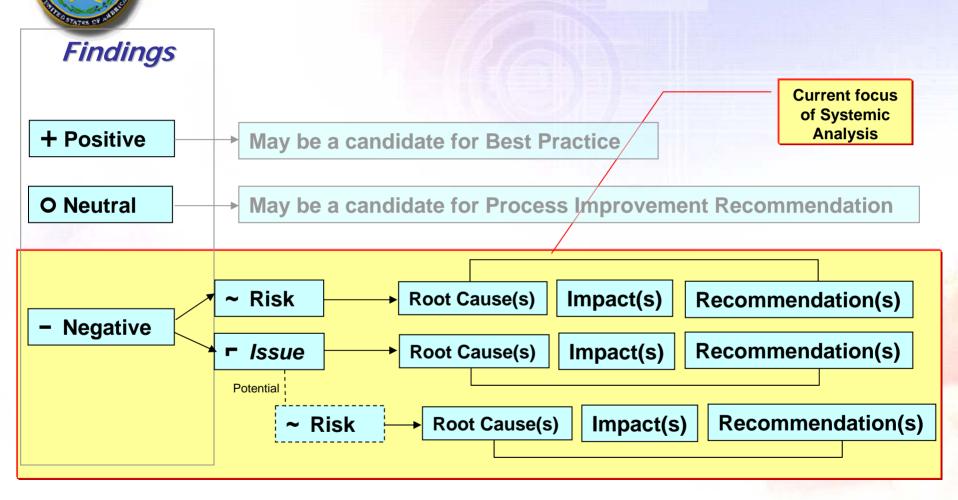
Recommendations


Improved Acquisition Support to Warfighter

- Policy/Guidance
- Education & Training
- Best Practices
- Other Processes (JCIDS, etc)
- Oversight (DABS/ITAB)
- Execution (staffing)

Systemic Analysis: Data Model Rev1

Steps 1a, 1b, 2-4 Underway...


NDIA-SRCA v1.01

Page 4 of 32

Program Support Review (PSR) Taxonomy of Classifications

+ Positive
O Neutral
- Negative

r Issue ∼ Risk

~3700 Findings from Program Reviews

Top 10 Emerging Systemic Issues

(from 52 Program Reviews since Mar 04)

1.	Management

- IPT roles, responsibilities, authority, poor communication
- Inexperienced staff, lack of technical expertise

2. Requirements

- Creep/stability
- Tangible, measurable, testable
- 3. Systems Engineering
- · Lack of a rigorous approach, technical expertise
- Process compliance

4. Staffing

Inadequate Government program office staff

5. Reliability

Ambitious growth curves, unrealistic requirements

Inadequate "test time" for statistical calculations

6. Acquisition Strategy

- Competing budget priorities, schedule-driven
- Contracting issues, poor technical assumptions

7. Schedule

Realism, compression

8. Test Planning

Breadth, depth, resources

9. Software

- Architecture, design/development discipline
- Staffing/skill levels, organizational competency (process)
- 10. Maintainability/Logistics
- Sustainment costs not fully considered (short-sighted)
- Supportability considerations traded

Major contributors to poor program performance

NDIA-SRCA v1.01 Page 6 of 32

Observations Since Last Year

- Programs fail because we don't...
 - Start them right
 - Manage them right

...We Don't Start Them Right

- Requirements creep/stability not tangible, measurable, testable, defined
- Acquisition strategies based on poor technical assumptions, competing budget prioritities, and unrealistic expectations
- Budget not properly phased
- Lack of rigorous systems engineering approach
- Schedule realism success oriented, concurrent, poor estimation and/or planning
- Inadequate test planning breadth, depth, resources
- Optimistic/realistic reliability growth not a priority during development
- Inadequate software architectures, design/development discipline, and organizational competencies
- Sustainment/life-cycle costs not fully considered (short-sighted)

...We Don't Manage Them Right

- Insufficient trade space resources, schedule, performance, requirements
- Inadequate IMP, IMS, EVMS
- Insufficient risk management
- Concurrent test program
- Inadequate government PMO staff
- Inexperienced and/or limited staffing
- Poorly defined IPT roles, responsibilities and authority
- Poor communications

A STATE OF S

Root Cause Effects Model

Systemic Solution Set Who's Affected **Systemic Issues** Symptoms **Root Cause** Management Policy/ Component **Technical Process** Guidance Requirements Acq **Increased** program **Exec Management Process** § **Systems** execution risk **Engineering** Potential schedule and cost **Acquisition Practices** breach **Staffing** Shared engineering **Education & Requirements Process** functions not given proper Component **Training Acquisition Strategy** attention Rep **Competing Priorities** Rework Schedule Insufficient system Staff performance information to **Test Planning** make informed milestone Communication decision Best Software Potential for lower readiness Program Realism Practices **PEO** levels and higher maintainer Maintainability & workload **Contract Structure &** Logistics Etc... **Execution** Etc Governance PM

Recommendations Must Address Root Causes at Their Source

NDIA-SRCA v1.01 Page 10 of 32

NT OF JUNE

Systemic Analysis Milestones

Develop & pilot root cause terms	SRCA Workshop (Part I)	Apply Root Cause Structure to program findings	Analyze preliminary results	SRCA Workshop (Part II)
Oct 06	Jan 07	Feb – Jul 07	Aug 07	Sep 07

- Categorized root cause textual descriptions
- Terminology developed by small team, limited
- Pilot effort proved that terms lacked proper structure and definition
- Pilot RCT on program reviews: past effort and go-forward
 - · Definitions enhanced, terminology revised
 - Analysis of trends and applicability;

- Redefined Root Cause Type: 3 Tier
- Terminology developed by workshop participants representing DoD and Industry
- RCT structure informally tested on 4 programs from different domain areas
- Validate pilot on root cause method/structure
- Formulate systemic root cause recommendations
- Feedback on SA model and root cause methodology

Coming Up:

Oct 07: Present results to SE community (NDIA-SE Conference)

Nov07: Present results to acquisition community (PEO SYSCOM)

Dec 07: Formalize and standardize methodology

Mar 08: Incorporate other data sources (SEP, Triage, etc)

- Expand analysis to complete data set
- Establish NDIA Working Group on SRCA

NDIA-SRCA v1.01 Page 11 of 32

Root Cause Types Recap of Part I Results

- Root Cause Types needed to categorize and discuss root causes
- Root Cause Type structure defined
 - Tier 1: Root Cause
 - » Textual description; documented by PSR team
 - » Perceived program root cause

Tier 2: Systemic Root Cause

Pilot Underway

- From pre-defined list; assigned by PSR team
- » Can be "A" or "a". Conditions that are outside the PMO below the Defense/Service Acquisition Executive level. This would include lateral activities, such as Service staff functions (OPNAV, Air Staff, etc.) and the system commands.
- Tier 3: Core Root Cause
 - » From pre-defined list; assigned by PSR team
 - » At the "A" level. Something at the DAE level (3 Star level and above) Issues resolved through DAE coordination with Congress, DoD, Services, Industry, etc,

Root Cause Analysis is Crux of Systemic Solutions

NDIA-SRCA v1.01 Page 12 of 32

A STATE OF S

Root Cause Type Structure

Systemic Root Cause (Tier 2)

- 1. Ineffective communication
- 2. Competing priorities
- 3. CONOPs change
- 4. Definition of enterprise
- 5. Engagement of supply base in SE process
- 6. Expectations not defined
- 7. Inadequate baseline management
- 8. Inadequate contract structure and execution
- 9. Inadequate cost metrics e.g. EVMS
- 10. Lack of accountability
- 11. Lack of capital investment
- 12. Lack of enterprise wide perspective
- 13. Lack of appropriate staff
- 14. Lack of trade space/constraints
- 15. Lack of trust and willingness to share information
- 16. Obfuscating bad news
- 17. Ineffective organization
- 18. Poorly defined roles/responsibilities
- 19. Process Management
- 20. Process Production
- 21. Process Requirements
- 22. Process Technical
- 23. Program realism
- 24. Responsibility w/o authority
- 25. Poor Acquisition Practices

Core Root Cause (Tier 3)

- 1. Acq Reform: Loss of govt. capital investment
- 2. Acq Reform: Loss of MS A requirement
- 3. Acq Reform: Transferred Authority
- 4. Enabling infrastructure
- 5. Budget POM process (PBBE)
- 6. Culture
- 7. Rotations / continuity
- 8. Inadequate JCIDS process
- 9. Pool of clearable skilled people
- 10. External influences
- 11. Poor business practices

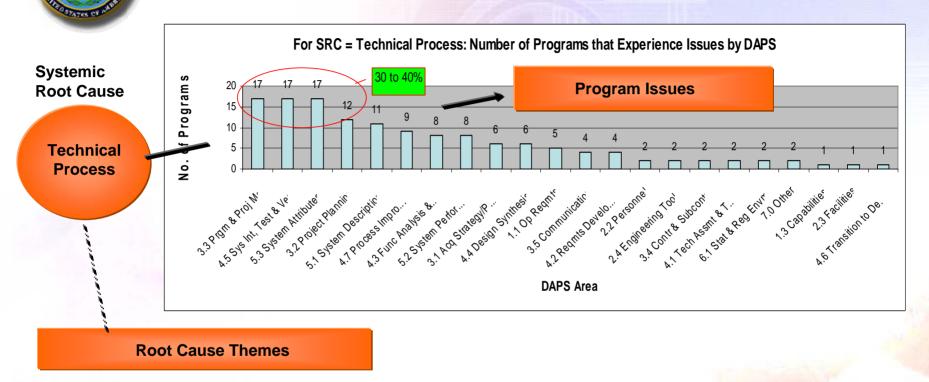
SADB Features

NDIA-SRCA v1.01 Page 14 of 32


Systemic Root Cause Analysis Preliminary Results

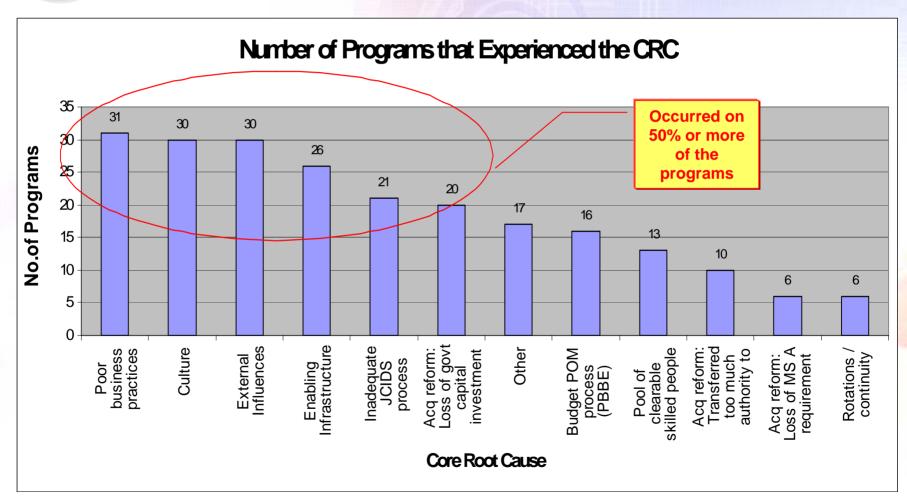
- Analysis performed on 44 program reviews
- SRCA applied to negative findings: ~ 48% of total set, ~1500 findings
- Trends shown by:
 - (1) Systemic Root Cause (SRC)
 - (2) DAPS areas related to leading SRC
 - (3) Core Root Cause (CRC)
 - (4) SRCs as related to:
 - » CRC = Poor Business Practice
 - » CRC = Culture

See Next 5 Slides for Results...

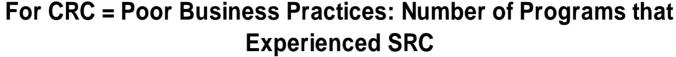

Categorization by Systemic Root Cause

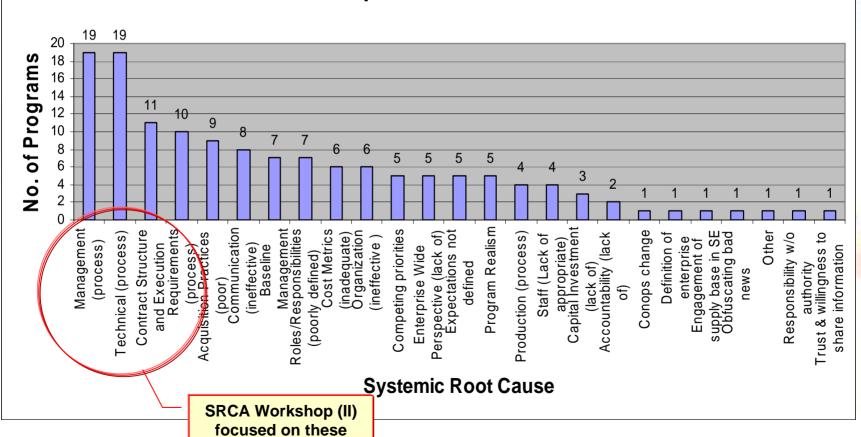
NDIA-SRCA v1.01 Page 16 of 32

Sys


Systemic Root Cause: Technical Process

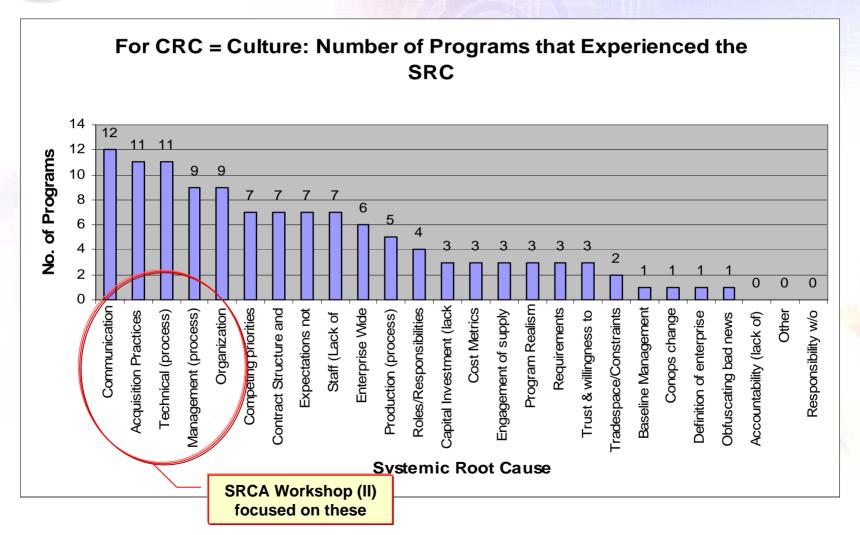
- Aggressive, success-oriented, highly concurrent test schedule
- Reliability not progressing as planned or has failed to achieve requirements
- Software reuse was significantly less than planned or expected
- Testing and verification approach are inadequate
- Program has inadequate systems engineering process




Categorization by Core Root Cause

NDIA-SRCA v1.01 Page 18 of 32

Relationship between CRC and SRC



NDIA-SRCA v1.01 Page 19 of 32

Relationship between CRC and SRC

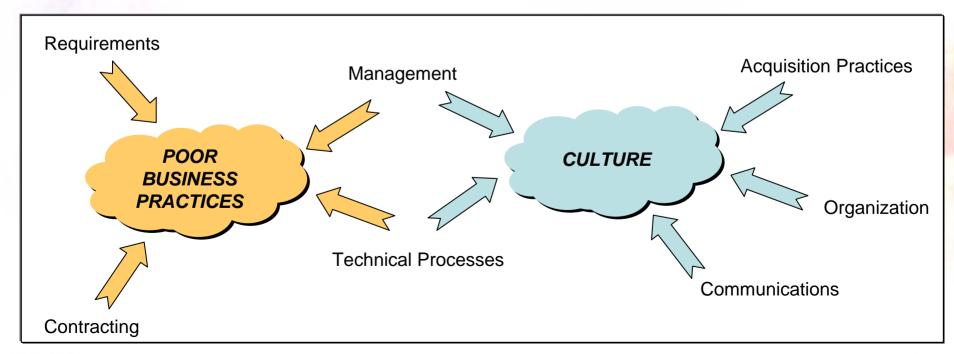
NDIA-SRCA v1.01 Page 20 of 32

SRCA Workshop Participants (Part II) 25-26 Sep 07

- Approximately 33 participants representing government and industry
- Non-OSD participants included...
 - Government
 - » Col Horejsi, US Air Force (PEO)
 - » Mr. George Mooney, USAF CSE
 - » Ms. Kathy Lundeen, DCMA
 - » Mr. John Snoderly, DAU

Industry

- » Mr. Bob Rassa, NDIA/Raytheon
- » Mr. Brian Wells, Raytheon
- » Mr. Rick Neupert & Mr. Jamie Burgess, Boeing
- » Mr. Stephen Henry, Northrop Grumman
- » Mr. Per Kroll, IBM
- » Mr. Paul Robitaille, Lockheed Martin
- » Dr. Dinesh Verma, Stevens Institute of Technology
- » Mr. Dan Ingold, University of Southern California



NDIA-SRCA v1.01 Page 21 of 32

TO THE STATE OF TH

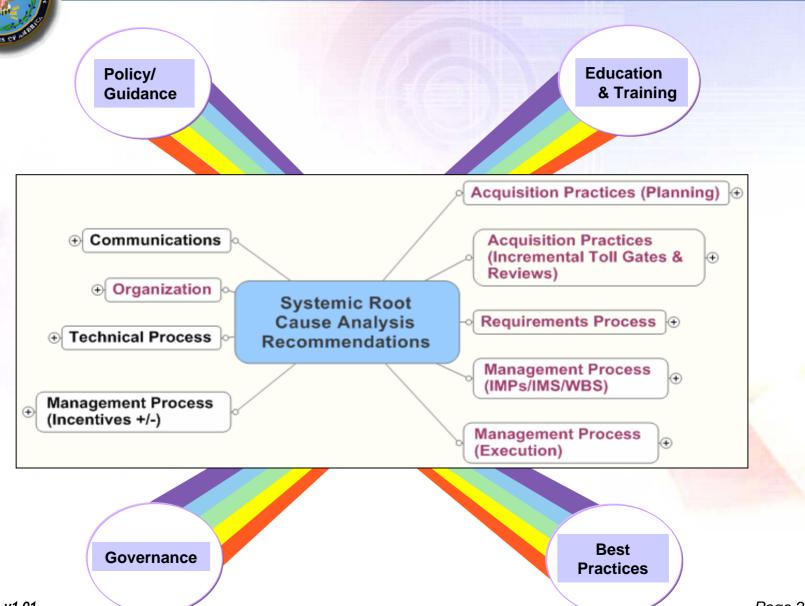
SRCA Workshop (Part II) Objective

- Primary SRCA Workshop II objective:
 - Formulate systemic root cause recommendations
- Participants focused on manageable subset of analysis results
 - 2 CRC areas and their top 4-5 SRCs

NDIA-SRCA v1.01 Page 22 of 32

Root Cause Model (e.g., Poor Business Practices)

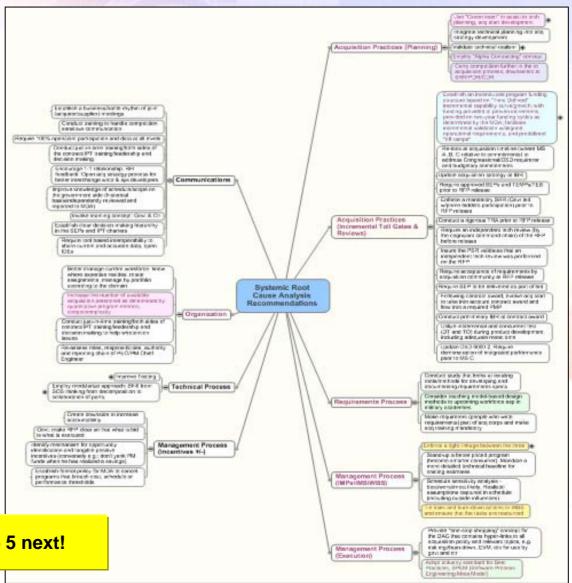
Source Systemic Root Cause Core Root Cause Solution Set


Policy/ Management Guidance **Process Education Technical** & Training **Process** FINDINGS Poor Business Musts Muh. Practices **Best** Contract **Practices** Structure & **Execution** Governance Requirements

Recommendations Must Address Root Causes at Their Source

RECOMMENDATIONS

Initial Thoughts on Systemic Improvement...



NDIA-SRCA v1.01

Page 24 of 32

SRCA Workshop Part II - Results

- A STORY OF SHIP
- Over 50 recommendations
 - Varied level of detail
 - Directed at variety of sources
 - » Acquirer & Developer
 - » PM, PEO, Comp. Rep., Acq. Exec
 - » SeniorManagement toSystems Engineer

Industry panel will discuss top 5 next!

Next Steps

- Develop Action Plan
 - Prioritize the emerging recommendations
 - Assign stakeholders
 - Establish timelines
- Complete analysis on remaining CRC areas
- Formalize NDIA Working Group to continue recommendation development on CRC analysis

NDIA-SRCA v1.01 Page 26 of 32

Questions/Discussion

Contact Information:

Dave Castellano

ODUSD(A&T) Systems & Software Engineering Deputy Director, Assessments and Support David.Castellano@osd.mil

Laura Dwinnell SSE/AS Support Systemic Analysis Team Lead LDwinnell@fasi.com

Systemic Root Cause Analysis

Industry Panel Discussion

Panel Moderator: Mr. Bob Rassa

Dave Castellano

Deputy Director, Assessments and Support

Laura M. Dwinnell

Systemic Analysis Team Leader

SYSTEMS & SOFTWARE ENGINEERING
Office of the Deputy Under Secretary of Defense
for Acquisition and Technology

23 October 2007

Industry Panel Members

- Mr. Stephen Henry
 - Northrop Grumman: Principal Engineer
- Mr. Brian Wells
 - Raytheon: Chief Systems Engineer
- Mr. Per Kroll
 - IBM: Manager Methods IBM Rational
- Mr. Paul Robitaille
 - Lockheed Martin: Director of Systems Engineering Lockheed Martin Corporate Headquarters; President, INCOSE
- Mr. James Burgess
 - Boeing: Systems Engineering Senior Manager, Leader of the Boeing Systems Engineering Best Practices Initiative Boeing Integrated Defense Systems

NT OF STATES

Results – SRCA Workshop Part II

5 "Heavy Hitter" recommendations include:

- Increase or improve competition down select at SRR/PDR/CDR
- 2. Provide mechanisms for better performance & Implement consequences for non-performance
 - » Increase use of toll gate reviews with off-ramps and specific guidance/requirements
- 3. Ensure better definition and verification of requirements. E.g. use meta-language, SE-based modeling, etc.
- 4. Require more close coupling of the IMPs/IMS/WBS
- 5. Increase acquisition workforce and expertise
 - » Use "green teams" to augment needed acquisition expertise

When is Extended Competition Cost Effective?

Program Complexity & SW Growth	ATP	SRR	PDR	CDR
Medium High Complexity Holchin Level 7*	188%	144%	122%	111%
Down Select Cost Savings Medium High		34%	31%	-3%
Medium Low Complexity Holchin Level 3*	144%	122%	111%	106%
Down Select Cost Savings Medium Low		12%	-2%	-42 %

^{*} SW Growth Based on Holchin Growth Curve Average Growth

Questions/Discussion

Contact Information:

Dave Castellano

ODUSD(A&T) Systems & Software Engineering Deputy Director, Assessments and Support David.Castellano@osd.mil

Laura Dwinnell SSE/AS Support Systemic Analysis Team Lead LDwinnell@fasi.com

NDIA-SRCA v1.01 Page 32 of 32