#### **Sparing Satellites** *Comparative Strategies of On-Orbit and In-Factory Storage*

#### 10<sup>th</sup> Annual Systems Engineering Conference

by

James Mazzei, Camille Keeley, Jon Westergaard, James Ayers & Helen Wong

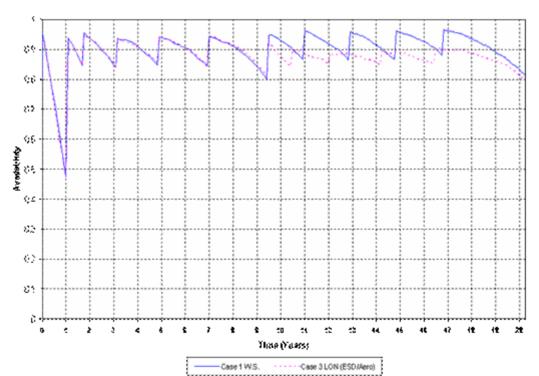


## Outline

- Introduction
- Warm Spare vs. Launch on Need Comparison
- Analysis of Operational Programs
  - Defense Satellite Communications System
  - Tactical Data Relay Satellite System
  - Geostationary Operational Environmental Satellite
- Commercial Systems
- Advantages & Disadvantages of OOS
- Conclusion






# Introduction

- Time required to produce satellite
- Generalized Availability Program (GAP)
- Milestone Schedule Elements



## Warm Spare vs. Launch on Need

#### Case 1 vs Case 3 LON (ESD/Aero)



Case 1 W.S. VS Case 3 Lon (ESD/Aero)

CORPORATION

UNCLASSIFIED

# **Analysis of Operational Programs**

- A military satellite communications system
  - -240 day LON = \$1M recurring
  - 60 day LON = \$22.5 M non-recurring & \$5.3 M recurring
- Tactical Data Relay Satellite System
  - On-orbit savings = \$6.5 M over 2 years



## **Commercial Systems**

Commercial systems universally store on orbit to take advantage of surge requirements and difficult maintenance issues.



# Advantages & Disadvantages of On-Orbit Storage

- Advantages: Cost (with assumptions).
- Satellites do not fail in order of launch
  - UHF Follow-On failures on orbit
    - Flight 3 and Flight 7
  - UHF Follow-On operational spacecraft
    - Flight 2 and Flight 4 (among others)



# Advantages & Disadvantages of On-Orbit Storage

- Advantages: Cost (with assumptions).
- Disadvantages:
  - Fuel budget
  - TT&C components extended life requirement
  - Additional radiation
  - Thermal/power degredation
  - Additional ground station resources required





### Cost savings wins (with assumptions).

