

U.S. AIR FORCE

Architecture-Based Concept Evaluation in Support of JCIDS

Dave Jacques, Ph.D. John Colombi, Ph.D.

NDIA 10th Annual Systems Engineering Conference 22-25 Oct 07

Architecture Based Concept Evaluation

Based on research sponsored by: AFRL/MN Eglin AFB

Thanks to Systems Engineering Graduate Students: Major Tor Dietrichs, Major Richard Griffin Major Adrian Schuettke, Major Mark Slocum

Bridge the Gap Architecture <u>and</u> M&S

Demonstrate an improved process of using <u>architectures</u> to <u>evaluate/refine</u> a proposed system <u>concept</u>

Application:

<u>Weapon Borne Battle Damage Assessment (WBBDA)</u> System Concept (2015-2025 time frame)

- Develop DODAF system architectures (both "as-is" and "to-be")
 - Key Products: OV-1, OV-2 (nodes), OV-5 (activities), OV-6a (rules), OV-6b (state transition diagram, or discrete event sim), OV-7 (data)
- Develop evaluation models directly from the system architectures
- Analyze results to identify key design parameters that can translate to system requirements and Key Performance Parameters in the JCIDS

Develop Architecture <u>based on joint ops concept</u>

- DoDAF architecture views
- Compare AS-IS and TO-BE architectures

Develop and use simulations <u>based on architecture</u>

- Analytical Model Excel, with Decision Analysis add-in
- Discrete Event Simulation– Rockwell Arena

Evaluate the system concept based on the results

So what is WBBDA? "To-Be" OV-1

Architecture TO-BE OV-2 Operational Nodes Diagram

The WBBDA enabled BDA Cycle

OV-5 Activity Diagram

Architecture OV-6a Rules Model

Architecture Method for Metrics

MOEs Established in ICD

Measure of Effectiveness	Numerator	Denominator		
1. AOR Coverage (AORC) – % of targets that receive BDA results	# targets BDA is collected on	# of targets attacked per package		
2. Total Time-Obscured Target (TT-OT)–Looks at total time from the completion of the attack strike (on obscured targets) to the point when all BDA assessment and dissemination is complete.	time	n/a		
3. Total Time– Subsurface Targets (TT-ST) Looks at total time from the completion of the attack strike (on subsurface targets) to the point when all BDA assessment and dissemination is complete.	time	n/a		
4. Package Effectiveness (PE)	# targets killed	# of packages		
5. Package Planning Effectiveness (PPE)	# targets attacked	# of packages		
6. Attack Effectiveness (AE)	# targets killed	# targets attacked		
7. Weapons per Target Kill (WPTK)	total # of weapons dropped	# targets killed		

Architecture Method for Metrics

Purpose: Construct analytical model based on architecture to evaluate the WBBDA system concept

Model outputs values for the following MOEs:

- Package Planning Effectiveness (PPE)
 - = # of targets attacked
- Package Effectiveness PE
 - = # of targets destroyed
- Attack Effectiveness AE
 - = # targets destroyed / # targets attacked
- WPTK = # weapons used per target destroyed

Single Package Model Key Terms

- P_k probability of kill (hit) based on all non-WBBDA factors (weapon performance, delivery system performance, etc.)
- Accuracy probability WBBDA correctly determines a hit / miss
- Reliability probability WBBDA correctly transmits and displays a hit / miss

Single Package Model Scenarios

AS-IS

- 2 bombs / target, simultaneous
- A/C RTB w/ 0 bombs

TO-BE: WBBDA

- 1 bomb / target, repeat until WBBDA "hit"
- A/C RTB w/ remaining bombs
- Same # of targets, less bombs

TO-BE: WBBDA + Doctrine (W+D)

- DOT_LPF doctrine change (WBBDA + drop remaining bombs on additional/secondary tgts)
- A/C RTB w/ no bombs
- More targets, same # of bombs

Single Package Model Example

- Drop 100 bombs on 100 targets
- Assume: P_k = 0.80, Reliability = 0.95, Accuracy = 0.90

Single Package Model Example (cont'd)

Single Package Model Example - Targeting Implications

Results of 1st attack--implications to further targeting (P_k=.8, Rel.=.95, Acc.=.9)

Single Package Model Example – Overall Results

- Results after all reattacks (< 4 passes...100, 30, 5, 2)</p>
 - Strike package departs with 100 WBBDA "hits"
 - Overall: 97 targets destroyed, 3 missed (Type I Errors)

		State of Nature				
A		Hit Tgt	Miss Tgt			
B	Assess Hit	97	3 Type I			
M	Assess Miss	0 Type II	0			

Single Package Model Actual Results w/ Inputs at Baseline

INPUTS: Components WBBDA Effectiveness (all baseline)				μ	σ							
	Weapon Pk				0.80	0.051	norm	al distribu	tion		_	
	OUTPUTS	As	s-ls WBBDA				BDA WBBDA w/ d chang			WBBDA w/ doctrine change		
OUTPU		μ	σ	μ	σ		% improve in µ	μ	σ	% improve in µ		
Package Package	PPE (planned)	100	0.0	100	0.0)	0.0%	145	0.0	45%		
Attack Eff	PE (destroyed)	95	2.1	98	1.0	Г	2.4%	139	4.7	45%		
Weapons	AE (PE / PPE)	0.952	0.021	0.975	0.01	0	2.4%	0.956	0.032	0.3%		
	WPTK	2.10	0.04	1.41	0.0		-33%	1.42	0.09	-33%	\mathbf{b}	
	WBBDA + Doctrine -											

WBBDA capabilities improve on the AS-IS scenario

Single Package Model Sensitivity to Weapon Pk

PE Vs. Pk (% improvement relative to As-Is)

Strengthens argument to implement doctrine change

Single Package Model Sensitivity to WBBDA Reliability

WPTK Vs. WBBDA Reliability (% improvement relative to As-Is)

Supports establishment/study of a Reliability requirement

Single Package Model Sensitivity to WBBDA Accuracy

PE Vs. WBBDA Accuracy (% improvement relative to As-Is)

Supports establishment/study of an Accuracy requirement

Single Package Model Aircraft Loadout Comparison

Does WBBDA capability favor either scenario?

- More weapons per jet of lower P_k (SDB scenario)
- Fewer weapons per jet of higher P_k (JDAM scenario)

	2,000# JDAM				250# SDE	}	500# JDAM			
	As-Is	WBBDA	W+D	As-Is	WBBDA	W+D	As-Is	WBBDA	W+D	
# Tgts Destroyed	78	1.3%	54%	70	8.6%	33%	78	1.3%	54%	
# Bombs Dropped	160	-34%	0%	160	-19%	-1%	160	-34%	0%	
#Sorties Flown	80	0.0%	0%	20	0.0%	0%	40	0.0%	0%	
Optimum # of Sorties	80	-34%	0%	20	-15%	0%	40	-33%	0%	
Tgts Dest. / Opt. Sortie	0.975	52.9%	54%	3.5	27.7%	33%	1.95	50.0%	54%	

Analysis of model results forced reconsideration of MOEs, architecture, and model

- **STEP 1: Design Ops Concept (OV-1) of System to be Evaluated**
- STEP 2: Identify MOE's Relevant to the Decision/Evaluation
- STEP 3: Identify Required Level of Abstraction for Architecture to Show Traceability to MOE's
- STEP 4: Identify Architecture Views Necessary to Capture Structure/Relationships. NOT VIEWS, BUT DATA
- STEP 5: Develop Architecture Views NOT VIEWS, BUT DATA
- STEP 6: Modeling/ Simulation consistent with Architecture
- STEP 7: Evaluate Model Completeness
- **STEP 8: Evaluate MOE**

Conclusion ABEP vs DODAF

6 Step DoDAF v1.5

Conclusion

- WBBDA Specific
 - WBBDA + Doctrine Shift significantly increases MOE's
 - WBBDA Performance is sensitive to Accuracy, Reliability, & Pk
- Non-WBBDA Conclusions
 - Architecture can be used to effectively evaluate a system concept
 - Evaluate Gaps (FNA) and Evaluate Alternatives (FSA and AoA)
 - Identify Critical Requirements, KPP's
 - Provide Feedback for Architectural Changes & Emerging MOE's
- Process
 - Evaluation w/o Architecture = Inaccurate Evaluation, redundant effort, non-Concordance
 - Architecture w/o Evaluation = Static Architecture

Architecture can be used effectively to perform concept definition and analysis in support of JCIDS