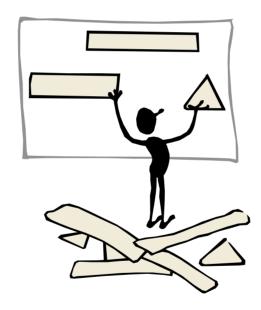


Federal Information Security Management Act (FISMA) Operational Controls and Their Relationship to Process Maturity


Ronda Henning rhenning@harris.com

The Basic Premise of This Presentation

 Proper preparation and planning makes later phases of the System Development Life Cycle easier to conquer.

NOTE: FISMA is used as a representative standard. Insert the security guidance document of your choice in the context of this presentation.

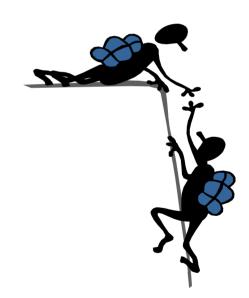
About FISMA

- The Federal Information System Management Act (FISMA)
- Consists of 17distinct families of security requirements
- Mandates quarterly vulnerability reporting and annual progress reports to GAO
- The framework for how to report is left to the interpretation of the parent agency

FISMA Control Families

Management Controls

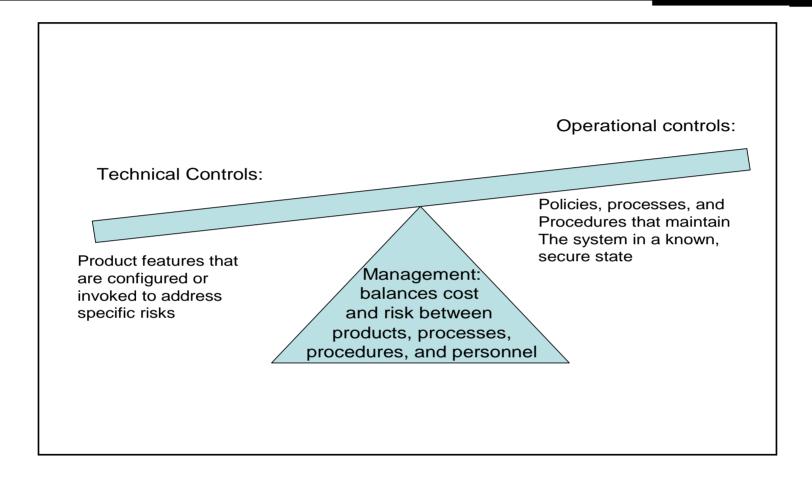
- Risk Assessment
- Planning
- System and Services Acquisition
- Certification & Accreditation (C&A)


Technical Controls

- Access Control
- Audit and Accountability
- Identification and Authentication
- System and Communications
 Protection

Operational Controls

- Awareness and Training
- Configuration Management
- Contingency Planning
- Incident Response
- Maintenance
- Media Protection
- Physical and Environmental Protection
- Personnel Security
- System and Information Integrity


Controls are Complementary and rely on each other for fulfillment

Relationship among controls

Operational Controls

- People Oriented
 - Awareness and Training
 - Personnel Security
- Physically Oriented
 - Environmental Controls
 - Media Protection
 - System Integrity
 - Contingency Planning

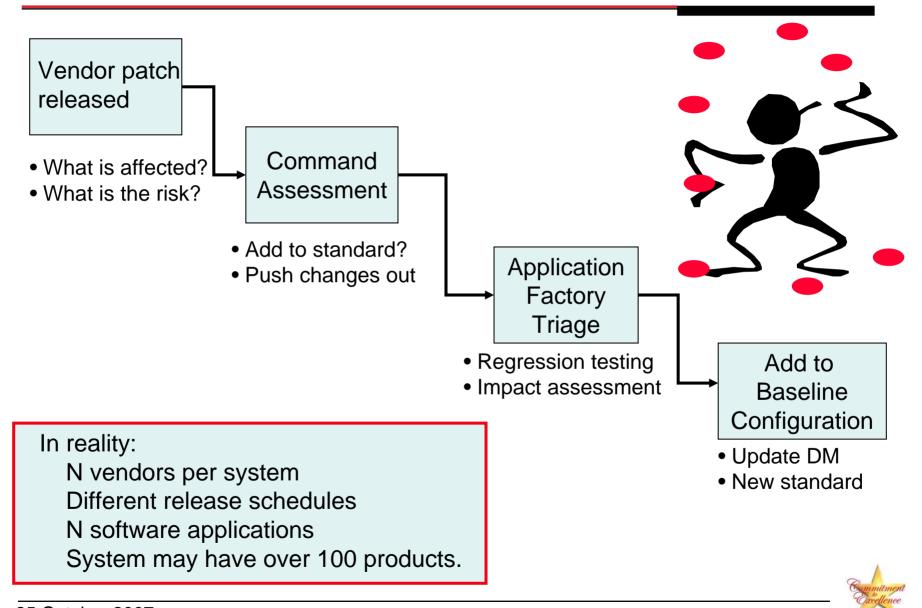
Device Oriented

- Configuration Management
 - Software
 - Firmware
 - Hardware
- Maintenance
 - Routine
 - Emergency
- Incident Response
 - What is an incident?
 - Reactive v. Proactive actions
- System & Information Integrity
 - Is the data corrupted?
 - Is the system image valid?
 - Are they current/accurate?

Device Oriented Requirements

- Harder to address later in SDLC
- Frequently neglected in development
- Reason:
 - It's hard enough to get the system integrated and working, planning for later operations is left to the student.
- In reality:
 - Planning ahead is the best way to maintain a proactive assurance posture

Security Objective of Device Controls



- Define and maintain a known, secure state
 - At delivery and ongoing
- Systems are integrated products
 - Each vendor has their own set of quality and security processes
 - Monthly patches, quarterly patches, emergency patches
 - Options are:
 - Working system with vulnerabilities
 - Semi-functioning system without testing
 - Cross your fingers and hope!
 - Everything works with the patch and no testing
 - Nobody tries to exploit the problems before you fix them

In the Ideal World

Process Integration: A Better Way

- CMMI processes already include configuration management and change management
- What they may not include is specific processes associated with security change management
- Risk must be addressed in the process

Supplemental Guidance

- System Security Engineering CMM
 - Add security relevant functions to standard CMMI activities
 - Incorporation in an organization's standard process framework is an incremental change
- A Caveat:
 - An incremental change that involves careful component management
 - Accounting at a more granular level
 - All the component software entities
 - Protocols, reference standards, etc.

Mapping Goals, KPAs and FISMA:

FISMA Control:

Specifies what must be managed, what artifacts should be produced for the system. Control defines the compliance baseline.

Maps to CMMI KPA

CMMI KPA:
Basic process guidance & structure

Specific Guidance for Security Engineering

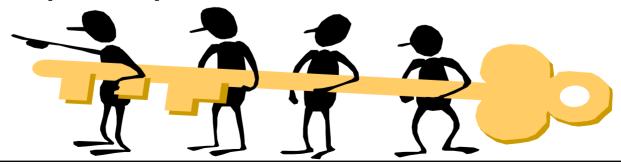
SSE-CMM KPA:

- Manage Configuration of Security Components.
- Assess security impact of change?
- Define change management process
- Assess risk associated with change?
- Document risk decisions

Implications

- Augmentation to existing process means higher probability of organizational acceptance
- Does not imply use of automated techniques: although they are easier with larger systems and global deployments
- Areas for automation:
 - Asset inventory
 - Baseline configuration tracking
 - Vendor notification and update service
 - Deployment tracking

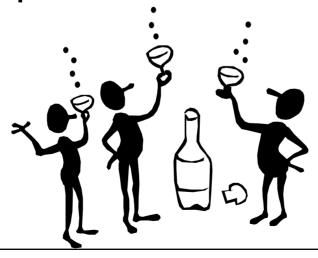
Further Implications


- Starting process management at authority to operate is too late.
- The baseline is established by then.
- May not have been monitored and upgraded throughout development.
 - It's hard to develop code on a moving target
 - Vulnerabilities may be inadvertently used as part of the system feature set
 - Compromises need to be documented

Basic Flow

- FISMA families explain what has to be done (tangible product)
- CMMI provides the contextual framework for inclusion of FISMA families in an integrated set of engineering processes
- SSE-CMM defines specific process guidance that helps an organization develop the product

In Summary



- Exact correspondence will vary:
 - Some organizations won't address all goals.
 - Compensating management controls can be traded against technical controls
- Goal is to define repeatable process:
 - Certification and accreditation required every 3 years
 - Ongoing monitoring requirements on an annual basis
 - Simpler to accommodate the requirements within existing processes
 - SSE-CMM and CMMI provide guidance and placeholders that can facilitate compliance

Conclusion

- Starting from a secure foundation is easier than trying to shore up an unsound one.
- Framework for security improvement is already there – but not applied.
- Process maturity dictates that we learn from our experiences and evolve.

For More Information

- FISMA:
 - www.csrc.nist.gov

- SSE-CMM:
 - www.issea.org

- CMMI:
 - www.sei.cmu.edu

