
Copyright © 2004 Computer Sciences Corporation. All rights reserved. 10/5/2007 10:28:48 AM 1

NDIA Systems Engineering Conference
October 22-26, 2007

Defining Software Component
Specifications: An Open Approach

Kenneth Klein
Computer Sciences Corporation

Kenneth A. Klein

10/5/2007 10:28:48 AM 2

A Couple Definitions

• Open
– Based on widely excepted and supported standards
– Defines key interfaces using these standards
– Not proprietary

• Software Component
– A modular part of a software design that hides its

implementation behind a set of external interfaces.
– Within a system, components satisfying the same interfaces

may be substituted freely.

• That’s what the terms mean in the context of these slides….

10/5/2007 10:28:48 AM 3

The Problem

• Given an “as-built” component-based Department of
Defense (DoD) software system

– Code written in Java
– Interface-based component services

• Needed an approach to documenting each component as a
as a set of well-defined interfaces

– Required to meet DoD “openness” standards
– Critical for making components extendible and reusable

The problem has a problem…

10/5/2007 10:28:48 AM 4

Well-Defined is not Well-Defined

• A lot of literature available on defining:
– Information exchange standards, e.g., CORBA, JMS, DDS
– Specific implementations of these standards
– Component frameworks, e.g., SOA, EJB
– Quality of Service requirements

• Not so much out there on defining a service’s functional
behavior

10/5/2007 10:28:48 AM 5

The Solution

• Define the component and its services using:
– Lightweight UML domain modeling
– Design by Contract (DbC) principles

• Tools used
– A UML modeling tool that can generate HTML output
– Doxygen

• Open source C++/Java documentation generation tool
– Similar to Javadoc

» Recognizes Javadoc comment delimiters
• Reads source code, generates HTML
• www.doxygen.org

– A web browser

10/5/2007 10:28:48 AM 6

Navigating the Spec

10/5/2007 10:28:48 AM 7

Navigating the Spec

10/5/2007 10:28:48 AM 8

Domain Model: The Context Diagram

10/5/2007 10:28:48 AM 9

Context Diagram

• Shows component’s provided and required interfaces
– Provided interface declares services that this component offers

to external components
– Required interface declares services that this component

requires from external components
• Describes required interfaces in context of this component

– Each component may describe the same required interface
differently based on the component’s needs

– E.g., given an Illuminator interface, one client may require it to
check Illuminator equipment status; another client may require
it to Illuminate a target

10/5/2007 10:28:48 AM 10

Context Diagram Example

Provided

Required

10/5/2007 10:28:48 AM 11

Context Diagram Example (cont.)

on cli
ck

Required

10/5/2007 10:28:48 AM 12

Component Services Example

10/5/2007 10:28:48 AM 13

Component Services

• What is expected of the client?
• What does the service do?
• State all this with as few implementation details as possible

– Most implementation choices should not impact the
specification

– More likely specification will remain unclassified
• Design by Contract provides a solution

10/5/2007 10:28:48 AM 14

What is Design by Contract (DbC)?
• Defines the contract between the interface and its clients
• Preconditions

– States that must be true when service is invoked
• Postconditions

– If service is invoked when preconditions are true,
postconditions describe guaranteed outcome

• e.g., state changes, messages sent
• Invariants

– Attribute constraints that must always be true:
• After component instantiation
• Before/after each service invocation
• e.g., An Engagement must have exactly one Target

• Exceptions
– Describes what happens when preconditions or invariants are

violated or postconditions cannot be met
– Behavior can be “undefined”

10/5/2007 10:28:48 AM 15

Why DbC?

• Well documented, mature paradigm
– Term coined by Bertrand Meyer in 1997
– Since then, large volume of literature written on the topic

• See resource list

• Decoupled from implementation details
– Guidelines for “just enough” information
– Implementation can change without impacting contract

• Encourages discussions that may otherwise never occur
– Provides common vocabulary for complex concepts
– Exceptions often discovered when writing contracts

10/5/2007 10:28:48 AM 16

Why DbC? (cont.)

• Facilitates Liskov Substitutability Principle (LSP)
– Service implementations/extensions must not add

preconditions or remove postconditions
• Supports:

– Maintainability/Extendibility/Reusability

10/5/2007 10:28:48 AM 17

DbC Note: Preconditions and Callbacks

• Callback services should not change the state that triggered
the callback

– Remaining observers will receive incorrect notifications
• Subject component has a list of color observers
• Subject reports “I just turned red”
• One of the observers changes subject to blue
• The remaining observers will incorrectly be notified that subject is

red

• Mitigation
– Subject component keeps track of whether a callback is in

progress
– Any offered service that could change an observed state has a

precondition that notifications are not in progress
• Above observer’s attempt to make subject blue would be rejected

10/5/2007 10:28:48 AM 18

DbC Note: Maintaining the Invariants

• Exceptional service termination must restore component
invariants

– Otherwise, component is not stable, so its services’ behavior is
undefined

– May be criteria for invoking recovery path
• Concurrency should only be allowed for services that can

guarantee that preemption can only occur while the
component invariants are in place

– Mitigated by many concurrency oriented architecture and
design patterns

• See Pattern-Oriented Software Architecture Vol. 2: Patterns for
Concurrent and Networked Objects

10/5/2007 10:28:48 AM 19

Component Service Contracts

• Method signature
– Captured as-is from source code

• Preconditions/Postconditions/Exceptions
• Query or Command

– Does the service change the parameters’ or the component’s
state?

• Parameters
– Constraints

• E.g., valid ranges, precision, units
– Is ownership transferred?

• If “no,” client must be notified of any state changes
– Type Definitions

• Imported as-is from source code
• Linked via hypertext

10/5/2007 10:28:48 AM 20

Component Service Contracts (cont.)

• Quality of Service
– Performance, throughput, blocking, availability

• Is concurrency allowed?

10/5/2007 10:28:48 AM 21

Service Contracts as Comments in the Code
• From The Mythical Man Month (M3), pg. 169 [Fred Brooks, 1995]

(first edition published in 1975)
– We typically attempt to maintain a machine-readable form of a program

and an independent set of human-readable documentation, consistent
of prose and flow charts.

– The results in fact confirm our teachings about the folly of separate
files. Program documentation is notoriously poor, and its maintenance
is worse.

– The solution, I think, is to merge the files, to incorporate the
documentation in the source program.

• This is what Doxygen does…

10/5/2007 10:28:48 AM 22

Component Services Example: Java Code
/**

* DESCRIPTION:

* <p>

* This method will distribute the request to the WeaponResourceManager.

* <p>

* @param[in] request The request being sent to the WeaponResourceManager.

* -# Valid ranges

* - Not null

* @par Query or Command:

* Command

* @pre

* -# None.

* @post

* -# If the request is an Alpha Request, it was added to the

* Illuminator Schedule.

...
*/

public void setRequest(RequestIF request);

10/5/2007 10:28:48 AM 23

Component Services Example: Doxygen Output

Extracted from
code comment

block

10/5/2007 10:28:48 AM 24

Component Contract Example

10/5/2007 10:28:48 AM 25

Component Contracts

• Preconditions/Postconditions
– Before and after component startup, respectively

• Invariants
– Applicable to component as a whole

• Each is a pre & post condition for every service

• Exceptions
– If pre/post conditions or invariants violated

• “Full load” memory requirements
• Proven hardware platform and OS support
• Communication standards and implementations

– E.g., JMS/Websphere, DDS/NDDS 4.0, CORBA/ACE TAO
• Other Protocols/Standards

– POSIX, SNMP, .NET, etc.

10/5/2007 10:28:48 AM 26

Component Contracts (cont.)

• Programming Languages
• Configuration file dependencies
• Availability requirements, e.g., MTBF

10/5/2007 10:28:48 AM 27

Component Contract Example

More below…

10/5/2007 10:28:48 AM 28

Contract Ambiguity Problem

• From M3 pp. 63-64
– Human language is not naturally a precision instrument for

[specification] definitions.
– Formal definitions are precise. What they lack is

comprehensibility.
– I think we will see future specifications to consist of both a

formal definition and a prose definition.

• This is what the Domain Model does…

10/5/2007 10:28:48 AM 29

Contract Ambiguity Solution: The Domain Model

• Provides formality of UML
– Each domain class is clearly defined in the model

• Contracts reference domain classes in plain English
• What is a domain class?

– Real-situation notional class in a domain, e.g., Launcher
Schedule, Target, etc.

– They are not actual software implementation classes
• Why not implementation classes?

– M3 says (pg. 175): “If one uses only a highest-level structure
graph, it might safely be kept as a separate document, for it is
not subject to frequent change.”

– Notional domain classes are stable, because they are
decoupled from implementation details

10/5/2007 10:28:48 AM 30

Domain Model Example

10/5/2007 10:28:48 AM 31

Domain Model Example

Multiplicity

is an
invariant

10/5/2007 10:28:48 AM 32

How Domain Model Relates to Contracts

on click

Contract

10/5/2007 10:28:48 AM 33

Glossary

10/5/2007 10:28:48 AM 34

Glossary Excerpt

10/5/2007 10:28:48 AM 35

Summary: Comp Spec Artifacts

Doxygen

Code w/
Service

Contracts

Glossary

Comp
Contract

Modeling
Tool

Domain
Model

Contract
Glossary

Comp
Contract

Service
Contract

Domain
Model

Text

HTML

Has
Doxygen

tags

10/5/2007 10:28:48 AM 36

How This Technique Addresses Openness

• Provides well-defined interfaces using open paradigms
– DbC and UML Domain Modeling

• Generated using open tools
• Output is readable in any HTML browser

10/5/2007 10:28:48 AM 37

What the Component Spec Provides

• Software Architect
– Defines a component’s role in overall architecture
– Facilitates component reuse

• Software Developer
– Defines implementation constraints
– Describes exceptional behavior

• System Engineer
– Facilitates understanding of the component’s role in fulfilling

requirements
• Component Test Engineers

– Provides basis for writing component level tests

Lets the stakeholders know the rules

10/5/2007 10:28:48 AM 38

Level of Effort for Sample Component

• Task requires domain knowledge
– Does not need to be expert, but does need access to an expert

• Documented 40 services
– 28 trivial, e.g., getters/setters
– 12 non-trivial

• 3.5 staff weeks

Writing specs takes time

10/5/2007 10:28:48 AM 39

For More Information

Kenneth Klein
kklein1@csc.com

856-252-2359

Joanis Ploumitsakos
jploumit@csc.com

856-252-2091

10/5/2007 10:28:48 AM 40

Backup

10/5/2007 10:28:48 AM 41

DbC Resources
• Larman, C., Appying UML and Patterns: Introduction to

OOA/D & Iterative Development, 3rd ed. 2005: Prentice
Hall.

• Szyperski, C., Component Software: Beyond Object-
Oriented Programming 2nd ed. 2002: ACM Press.

• Mitchell, R. and McKim, J. Design by Contract, by
Example. 2002: Addison-Wesley, Inc.

• Cheesman, J. and Daniels, J. UML Components: A Simple
Process for Specifying Component-Based Software. 2001:
Addison-Wesley, Inc.

• Hunt A. & Thomas D., The Pragmatic Programmer. 2000:
Addison Wesley.

• Meyer, B. Object-oriented Software Construction, 2nd ed.
1997: Prentice Hall.

• http://archive.eiffel.com/doc/manuals/technology/contract/pa
ge.html

• http://ootips.org/lsp.html

http://archive.eiffel.com/doc/manuals/technology/contract/page.html
http://archive.eiffel.com/doc/manuals/technology/contract/page.html
http://ootips.org/lsp.html

10/5/2007 10:28:48 AM 42

Comp Spec Development Process

Install Doxygen
on classified PC

Set up Doxygen to parse
needed source files and the

HTML Link to the domain
model.

Create a directory structure for
component
API output

Write component contract using the
Glossary guidelines (from Support

Files) as a template.

Are All interfaces
documented

 for the component?

Done

Select a client interface to document.
Using the Glossary guidelines as a

template, add service contract to each
client interface function’s source code

abstract.

Use modeling tool to update
domain classes as contracts

are defined.

Run Doxygen. Verify that output is
acceptable and unclassified.

Y
es

Use modeling tool to
generate/update HTML

version of domain model

Use a modeling tool to create an
empty domain model.

Create text file with HTML link
to Domain Model’s HTML index

file.

NO

If necessary, insert Doxygen tags into
source code to exclude classified

information.

Place comp spec and domain
model HTML files into controlled

zip files.

Domain Expert and Methodology
Expert Review

Comments resolved

Start

	Defining Software Component Specifications: An Open Approach��Kenneth Klein�Computer Sciences Corporation
	A Couple Definitions
	The Problem
	Well-Defined is not Well-Defined
	The Solution
	Navigating the Spec
	Navigating the Spec
	Domain Model: The Context Diagram
	Context Diagram
	Context Diagram Example
	Context Diagram Example (cont.)
	Component Services Example
	Component Services
	What is Design by Contract (DbC)?
	Why DbC?
	Why DbC? (cont.)
	DbC Note: Preconditions and Callbacks
	DbC Note: Maintaining the Invariants
	Component Service Contracts
	Component Service Contracts (cont.)
	Service Contracts as Comments in the Code
	Component Services Example: Java Code
	Component Services Example: Doxygen Output
	Component Contract Example
	Component Contracts
	Component Contracts (cont.)
	Component Contract Example
	Contract Ambiguity Problem
	Contract Ambiguity Solution: The Domain Model
	Domain Model Example
	Domain Model Example
	How Domain Model Relates to Contracts
	Glossary
	Glossary Excerpt
	Summary: Comp Spec Artifacts
	How This Technique Addresses Openness
	What the Component Spec Provides
	Level of Effort for Sample Component
	For More Information
	Backup
	DbC Resources
	Comp Spec Development Process

