
Copyright 2007 Lockheed Martin Corporation. All rights reserved. 1

A Convergence of Technologies
for Better Software

NOW!

Dottie Acton
Lockheed Martin IS&GS

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 2

Topics

• Two categories of software errors
• How technologies can help
• Who needs to be involved
• Some experiences
• Questions
• Backup charts with technology

descriptions

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 3

Two Categories of SW Errors
Solving the problem wrong

– Incorrect implementation of
requirements (off by one bug,
logic errors, etc)

– Bad coding practices that
leave security holes

– Interface mismatches
– Delivering too late to be

useful
– Un-maintainable code
– Poorly performing software
– Poor user interfaces

Solving the wrong problem
– Misinterpretation of

requirements
– Missing requirements
– Unused capabilities
– Obsolete requirements
– Failing to recognize the

existence of ‘wicked’ problems
(the solution changes the
nature of the problem)

– Focusing on generic or
supporting domains rather than
on the core domain

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 4

What are the Technologies?

Supporting
Tools and
Practices

Agile
Development

Domain-Driven
Design

cu
st

om
er

de
ve

lo
pe

r

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 5

The Good News

Incorrect
Implementation

Interface
Mismatches

Security Holes

Late Delivery

Maintenance
Problems

User Interface
Problems

Performance
Problems

Agile Development

Robust
Tools

Some technologies help with the issue of solving
the problem wrong.

Standards
Checkers

Patterns and
Refactoring

SOA and
Reuse

Test-D
riv

en Development
Con

tin
uo

us

Int
eg

ra
tio

n

Tim
e-boxed

Developm
ent

Early Customer

Involvement

Demonstrate

Each Iteration

Design by
Contract

Autom
ated Tests

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 6

The Better News
Some technologies help with the more difficult

issue of solving the wrong problem.
Misinterpretation
of Requirements

Missing
Requirements

Unused
Capabilities

Lack of Focus
On Core Domain

Wicked
Problems

Obsolete
Requirements

Domain-Driven
Design

Agile
Development

Ubiquitous language

Deep models

Core Domain

Anti-
corruption
layer

Early Customer

Involvement, User Stories

Time-boxed

development

DemonstrateEach Iteration

Frequent

Deliveries

Clear P
roduct V

ision

Product
Backlog

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 7

The Best News
• The technologies are synergistic

Domain-Driven Design Ubiquitous Language Deep Models

Early Customer Involvement Clear Product Vision Product Backlog User Stories

Continuous Planning Time-Boxed Development Demonstrations

Test-Driven Development Automated Builds Continuous Integration

Refactoring Pair Programming Retrospectives Automated Testing

Anti-Corruption Layer Bounded Context Core Domain

Performance Monitors Refactoring Browsers Test Frameworks

• The barriers to adoption are relatively low
– Good FOSS tool support to get started

• COTS tools also available with additional capabilities
– Adequate literature and experience base for training

Standards Checkers Design by Contract SOA Reuse Robust Tools

cu
st

om
er

de
ve

lo
pe

r

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 8

Who is Involved?
• Who is involved in making a change to agile and

domain-driven design?
– Everyone!

• Customers, Users, Systems Engineering, Software Development,
Test, Specialty and Support Disciplines, Management, etc.

– Software developers usually like the change because it is a more
natural way to solve problems

– Systems engineers and managers sometimes have a harder
time adapting

• Managers fear the loss of the perception of being in control
• Systems engineers sometimes struggle with the need to keep the

big picture in mind while going deeper into selected areas for near-
term development

• Benefits generally outweigh the negatives
– Earlier feedback on requirements, architecture and design
– Earlier visibility into problem areas
– Good vehicle for transferring domain knowledge

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 9

Some Experiences (1)

• Program applying many of the practices
– Program Characteristics:

• Mission critical technical application, critical algorithms
• Adopted both domain modeling and agile practices
• Part of a larger system doing traditional development

– Results:
• High quality product, with good quality measurements
• Able to make substantial change to add capability and

improve performance with very little impact
• Happy engineering team and happy customers
• Practices spreading to other teams

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 10

Some Experiences (2)
• Program applying just a few of the agile

practices
– Program characteristics

• New capability being added to large existing system
• Many new developers
• Experts still involved in previous release that was behind

schedule
• Focused on standards, daily status meetings, continuous

integration, refactoring, automated builds
– Results

• New capability developed on time and budget
• High quality code, based on early test results and

independent quality assessment
• Happy team and happy customers

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 11

Summary

• Domain-driven design and agile
development together offer substantial
opportunities for improving how we do
business
– Tool support is now robust enough to support

iterative development
– Adequate material is available for training
– Substantial and sustained improvements are

becoming evident

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 12

Questions

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 13

• Descriptions of the Key Technologies
– Description
– Benefits
– References

• Additional descriptive material
• A book for further study

Backup Material

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 14

Agile Development
• Description:

– An approach to software development that uses short, time-boxed
iterations to support early delivery of the customer’s highest value
capability

• Each iteration is potentially shippable
– Agile approaches use continuous planning, analysis and design rather

than completing those activities up-front, before development begins
• Customer is involved in prioritizing and clarifying requirements throughout

each iteration
– Examples:

• Scrum, XP, Disciplined Agility, FDD, Adaptive Project Management
• Benefits:

– Produces early value for customers
– Accommodates changing requirements
– Improves quality and productivity

• References:
– http://en.wikipedia.org/wiki/Agile_software_development
– Agile Software Development: The Cooperative Game by Alistair

Cockburn

http://en.wikipedia.org/wiki/Agile_software_development
http://www.amazon.com/Agile-Software-Development-Cooperative-Game/dp/0321482751/ref=pd_bbs_sr_2/103-2084842-0441447?ie=UTF8&s=books&qid=1189560254&sr=8-2

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 15

Test-Driven Development
• Description:

– An approach to development that uses tests to drive the
production of SW

– Write a test, write the code, run the test, refactor
– Examples:

• Test frameworks include the xUnit family of FOSS tools (JUnit,
cppUnit, nUnit, etc) as well as commercially available tools

• Benefits:
– Produces high quality code with good interfaces and few

dependencies, which improves the maintainability of the system
– Makes future changes easier since all code has a suite of tests

• References:
– http://en.wikipedia.org/wiki/Test-driven_development
– Test-Driven Development: By Example by Kent Beck

http://en.wikipedia.org/wiki/Test-driven_development
http://www.amazon.com/s/ref=nb_ss_b/105-0162943-6220428?initialSearch=1&url=search-alias%3Dstripbooks&field-keywords=test-driven+development&Go.x=8&Go.y=7

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 16

Continuous Integration
• Description:

– With continuous integration, developers check in their code
several times a day, as soon as they complete each small chunk
of functionality

– When the code is checked in, a series of automated tests are run
to ensure that both the new code and the existing code base
function as expected

• Benefits:
– Defects are discovered soon after they are introduced, so they

are easier to find and fix
– Fewer unpleasant surprises late in development

• References:
– http://en.wikipedia.org/wiki/Continuous_integration
– Continuous Integration: Improving Software Quality and

Reducing Risk by Duvall, Matyas and Glover

http://en.wikipedia.org/wiki/Continuous_integration
http://www.amazon.com/s/ref=nb_ss_b/103-2084842-0441447?initialSearch=1&url=search-alias%3Dstripbooks&field-keywords=continuous+integration
http://www.amazon.com/s/ref=nb_ss_b/103-2084842-0441447?initialSearch=1&url=search-alias%3Dstripbooks&field-keywords=continuous+integration
http://www.amazon.com/s/ref=nb_ss_b/103-2084842-0441447?initialSearch=1&url=search-alias%3Dstripbooks&field-keywords=continuous+integration

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 17

Time-Boxed Development
• Description:

– Each short iteration is scheduled for a specified duration –
usually from 2-4 weeks

– If the scheduled work cannot be completed, it is deferred to the
next iteration

• Benefits:
– Establishes a project rhythm that improves productivity
– Provide early and frequent status based on working code
– Forces hard choices about capability

• The content must be allowed to change since schedule and quality
are fixed

• References:
– http://en.wikipedia.org/wiki/Timebox
– Agile Project Management: Creating Innovative Products by Jim

Highsmith

http://en.wikipedia.org/wiki/Timebox
http://www.amazon.com/Agile-Project-Management-Innovative-Development/dp/0321219775/ref=pd_bbs_sr_2/103-2084842-0441447?ie=UTF8&s=books&qid=1189596735&sr=8-2

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 18

Automated Tests
• Description:

– Test automation can occur at any level of testing
• Unit test automation is supported through test frameworks like JUnit
• Both FOSS and COTS products are available for automating aspects of higher level

testing
– Automated tests are designed to be run frequently, so they must be fast and free

of side effects
• Usually automated unit tests are run as an integral part of development (see TDD) and

each time the code is checked into the CM system
• Benefits

– Improved feedback to the developer and increases the quality of changes to the
code

– Automated tests are especially valuable for regression testing
– Provide a safety net for future changes

• References:
– http://en.wikipedia.org/wiki/Automated_testing
– http://www.junit.org/
– Fit for Developing Software: Framework for Integrated Tests by Rick Mugridge

and Ward Cunningham

http://en.wikipedia.org/wiki/Automated_testing
http://www.junit.org/
http://www.amazon.com/Fit-Developing-Software-Framework-Integrated/dp/0321269349/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189597111&sr=1-1

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 19

Early Customer Involvement
• Description:

– Customers create and prioritize items in the product backlog
– Daily interaction between customer and developers both clarifies

requirements details and allows for the deeper understanding that helps
manage the complexity associated with most domains

– Examples:
• Business person working with developers to clarify requirements for a payroll

system or invoice system
• Hardware engineer working with developers to clarify interactions between new

hardware and controlling software
• Systems engineers working with developers to develop algorithms for scheduling

access to specific resources
• Benefits:

– Reduces the need to capture requirements detail early in the life cycle
• References:

– http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Whole_team
– Extreme Programming Explained: Embrace Change (Second Edition) by

Kent Beck and Cynthia Andres

http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Whole_team
http://www.amazon.com/Extreme-Programming-Explained-Embrace-Change/dp/0321278658/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189598295&sr=1-1

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 20

Demonstrate Each Iteration
• Description:

– At the end of each 2-4 week iteration, the features developed
during that iteration are demonstrated to the customer

• Customer feedback drives priorities for future iterations

• Benefits:
– Promotes better understanding of additional or different needs
– Working code demonstrates real progress

• References:
– http://www.scrumforteamsystem.com/ProcessGuidance/Process/

SprintReview.html
– Agile Software Development with Scrum by Ken Schwaber and

Mike Beedle

http://www.scrumforteamsystem.com/ProcessGuidance/Process/SprintReview.html
http://www.scrumforteamsystem.com/ProcessGuidance/Process/SprintReview.html
http://www.amazon.com/Agile-Software-Development-SCRUM-Schwaber/dp/0130676349/ref=pd_bbs_sr_2/103-2084842-0441447?ie=UTF8&s=books&qid=1189599429&sr=1-2

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 21

User Stories
• Description:

– Short descriptions of features that can be implemented in 2 days to 2
weeks

– Three pieces to a user story
• Short written description
• Conversations about the story to flesh out the details
• Tests that convey and document details and that can be used to determine

when a story is complete
• Benefits:

– Provide a good basis for estimating size as well as a mechanism for
understanding user needs

– Force a shift to verbal communication for feature details, which is much
higher band-width and supports rapid feedback cycles

– The tests associated with the stories provide executable documentation
of user requirements

• References:
– http://en.wikipedia.org/wiki/User_story
– User Stories Applied for Agile Software Development by Mike Cohn

http://en.wikipedia.org/wiki/User_story
http://www.amazon.com/User-Stories-Applied-Development-Addison-Wesley/dp/0321205685/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189599672&sr=1-1

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 22

Product Backlog
• Description:

– A product backlog is a prioritized list of features desired for a product
• Grows and changes over time as more is learned
• Scope line shows how much can be accomplished with current funding

– Prioritization is primarily based on customer needs, but must also
consider technical dependencies

– Commercial and FOSS tools are available to help manage both the
product backlog and iteration backlogs

• Benefits:
– Prioritized development of functionality maximizes customer value
– Allows users to add, subtract or change features based on new needs
– Scope line provides on-going visibility into features that can be

developed with current funding
• References:

– http://www.mountaingoatsoftware.com/product_backlog
– Scaling Software Agility: Best Practices for Large Enterprises by Dean

Leffingwell

http://www.mountaingoatsoftware.com/product_backlog
http://www.mountaingoatsoftware.com/product_backlog

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 23

Frequent Deliveries
• Description:

– Short iterations allow early delivery to customer
• Each iteration should be potentially shippable

– Often multiple iterations are grouped for delivery to customer
• Functionality is complete with each iteration, but there may be need

for a ‘hardening’ iteration before shipment to address publication of
user documentation, final system tests, etc

• Benefits:
– Allows customers to get early benefit from the system
– Use of the system in the customer environment gives improved

opportunities to discover ‘the real requirements’
• References:

– http://www.stsc.hill.af.mil/CrossTalk/2002/10/mccabe.html
– Lean Software Development, An Agile Tool Kit by Mary and Tom

Poppendieck

http://www.stsc.hill.af.mil/CrossTalk/2002/10/mccabe.html
http://www.amazon.com/Lean-Software-Development-Toolkit-Managers/dp/0321150783/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189604040&sr=1-1

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 24

Clear Product Vision
• Description:

– Product vision is established early to guide future development
efforts

• Essential when requirements are not fully detailed initially
– One technique to establish the vision is to design the ‘box’ for

the product
• Differences between boxes designed by different teams can

illuminate areas of disagreement on product priorities
• Benefits:

– Helps focus customers and developers on the essentials of the
product

– Guides lower level implementation decisions
• References:

– http://www.innovationgames.com/game/PRODUCTBOX.aspx
– Agile Project Management: Creating Innovative Products by Jim

Highsmith

http://www.innovationgames.com/game/PRODUCTBOX.aspx
http://www.amazon.com/Agile-Project-Management-Innovative-Development/dp/0321219775/ref=pd_bbs_sr_2/103-2084842-0441447?ie=UTF8&s=books&qid=1189596735&sr=8-2

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 25

Automated Builds
• Description:

– Goal is to reduce the build process to a simple us-of-a-button
action

• Every programmer can perform a build whenever it is needed
– Incremental builds can help make this a reality

• With today’s tools it is possible for even the largest systems to build
multiple times a day

– Enables effective Test-Driven Development
• Benefits:

– Reduces time programmers spend on repetitive build tasks
– Improves ability to run tests for every change, which improves

quality and productivity
• References:

– http://www.electric-
cloud.com/solutions/agile_software_development.php

– Integrating Agile Development in the Real World by Peter Schuh

http://www.electric-cloud.com/solutions/agile_software_development.php
http://www.electric-cloud.com/solutions/agile_software_development.php
http://www.amazon.com/Lean-Software-Development-Toolkit-Managers/dp/0321150783/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189604040&sr=1-1

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 26

Pair Programming
• Description:

– Two individuals work side-by-side, sharing a single
workstation, to design or code

– Pairing with testers and engineers can be beneficial
when requirements clarification is needed

• Benefits:
– Provides a real-time peer review
– Good mechanism for knowledge transfer
– Improves code quality

• References:
– http://en.wikipedia.org/wiki/Pair_programming
– Pair programming Illuminated by Laurie Williams and

Robert Kessler

http://en.wikipedia.org/wiki/Pair_programming
http://www.amazon.com/Pair-Programming-Illuminated-Laurie-Williams/dp/0201745763/ref=sr_1_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189604859&sr=1-1

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 27

Retrospectives
• Description:

– At the end of each iteration, each team meets to celebrate the
completion of the iteration and to capture lessons learned for the next
iteration

– Three topics to consider
• What worked well and should be continued
• What should the team stop doing
• What needs to be done differently

• Benefits:
– Identifies areas for improvement in the next iteration
– Improved morale when team members know that the are listened to

• References:
– http://www.retrospectives.com/
– Agile Retrospectives, Making Good Teams Great by Esther Derby and

Diana Lawson

http://www.retrospectives.com/
http://www.amazon.com/Agile-Retrospectives-Making-Teams-Great/dp/0977616649/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189605467&sr=1-1

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 28

Domain-Driven Design
• Description:

– A way of accelerating software projects that have to deal with complex
domains

– Fundamental principles
• The primary focus should be on the domain and domain logic
• Complex domains should be based on a model

– Agile approaches enable domain-driven design
• Work with customers to develop models that reflect domain concepts
• Provide rapid feedback to clarify complex areas

• Benefits:
– Deeper understanding of the domain
– Better communication between developers and domain experts
– Ability to make breakthroughs at a faster pace

• References:
– http://domaindrivendesign.org/
– Domain-Driven Design: Tackling Complexity in the Heart of Software by

Eric Evans

http://domaindrivendesign.org/
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189611781&sr=1-1

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 29

Ubiquitous Language
• Description:

– A common language, based on the domain model, that serves as a
communication vehicle between engineers, developers and domain
specialists

• Use of model-based terms in all project communication facilitates deeper
understanding of the domain by everyone

• One of the best ways to refine a model is to explore with speech, trying out
loud various constructs from possible model variations

• Benefits:
– Improved communication, which results in better models and better

software
– Helps in the discovery of hidden concepts

• Often these arise in areas where the language does not flow smoothly
• References:

– http://domaindrivendesign.org/discussion/messageboardarchive/Ubiquit
ousLanguage.html

http://domaindrivendesign.org/discussion/messageboardarchive/UbiquitousLanguage.html
http://domaindrivendesign.org/discussion/messageboardarchive/UbiquitousLanguage.html

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 30

Deep Models
• Description:

– An incisive expression of the primary concerns of the domain
experts and their most relevant knowledge

• A deep model sloughs off superficial aspects of the domain and
naive interpretations

• A deep model distills the most essential aspects of a domain into
simple elements that can be combined to solve the important
problems of the application

• Benefits:
– Deep models enable acceleration of discovery and innovation

within a domain
– Keeps entire project on the same page

• References:
– Domain-Driven Design: Tackling Complexity in the Heart of

Software by Eric Evans

http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189611781&sr=1-1
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189611781&sr=1-1
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189611781&sr=1-1

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 31

Core Domain
• Description:

– The distinctive part of the model, central to the user’s goals, that
differentiates the application and makes it valuable

• Efforts to refine and distill models should be focused on the core
domain

• Benefits:
– Identification of core, supporting and generic domains can help

drive the company’s strategy for what they develop, outsource or
purchase

– Helps identify the impact of changes
• References:

– Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189611781&sr=1-1
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189611781&sr=1-1
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189611781&sr=1-1

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 32

Bounded Context
• Description:

– Defines the scope of each domain model
• Identifies what has to be consistent and what can be developed

independently
• Defines the boundaries for continuous integration

– Relationships between contexts can take multiple forms
• Shared kernel, customer/supplier development teams or conformist

• Benefits:
– Clearly identifies boundaries, which improves ability to integrate

across teams
– Understanding of relationships between contexts drives

appropriate program behavior
• References:

– Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189611781&sr=1-1
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189611781&sr=1-1
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189611781&sr=1-1

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 33

Anti-Corruption Layer
• Description:

– Allows new models to interface with legacy systems, without
losing the clarity needed for deep modeling

– Creates an isolation layer so that the new model can avoid
corruption caused by needing to adapt to the semantics of the
old system

– Can be implemented by a combination of façade and adapter
patterns, but it is more sophisticated than either of those

• Benefits:
– Keeps one side of a bounded interface from leaking into the

other, so the new models are not corrupted
• Provides a translation between parts of the system that adhere to

different models
• References:

– http://domaindrivendesign.org/practitioner_reports/peng_sam_20
07_06.pdf

http://domaindrivendesign.org/practitioner_reports/peng_sam_2007_06.pdf
http://domaindrivendesign.org/practitioner_reports/peng_sam_2007_06.pdf

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 34

Design by Contract
• Description:

– An approach to software design that makes pre- and post-
conditions explicit for each public method

• Uses asserts (or equivalent) to enforce the contracts
– Defensive programming is used at system boundaries, but not

for interfaces within a boundary
• Benefits:

– Interface mismatches are detected immediately, rather than
indirectly through the errors that result from the mismatch

• References:
– http://en.wikipedia.org/wiki/Design_by_Contract
– Object-Oriented Software Construction, Second Edition, by

Bertrand Meyer

http://en.wikipedia.org/wiki/Design_by_Contract
http://www.amazon.com/Object-Oriented-Software-Construction-Prentice-Hall-International/dp/0136291554/ref=pd_bbs_2/103-2084842-0441447?ie=UTF8&s=books&qid=1189625960&sr=8-2

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 35

Patterns
• Description:

– A pattern is a repeatable solution to a common problem in software
design

• Captures lessons learned about use of the solution in various situations
– Catalogs of patterns exist at various levels, including architecture

patterns and design patterns
• Benefits:

– Leads to higher quality designs that are easier to maintain with fewer
dependencies

– Enhanced communication of intent, based on the pattern selected
• The pattern name conveys a lot of information in a few words

• References:
– http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29
– Design Patterns: Elements of Reusable Object Oriented Software by

Gamma, Helm, Johnson and Vlissides

http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29
http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 36

Refactoring
• Description:

– An approach that systematically changes the internal structure of
code without changing its behavior

– An integral part of test-driven development
– Often done prior to making major changes to code, in order to

make it easier to make the changes
• Each small change is tested so any errors are detected immediately

• Benefits:
– Cleaner code, fewer dependencies, fewer defects
– Supported by refactoring browsers, so it is a relatively safe way

to make code changes
• References:

– http://en.wikipedia.org/wiki/Refactoring
– Refactoring: Improving the Design of Existing Code by Martin

Fowler

http://en.wikipedia.org/wiki/Refactoring
http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189626496&sr=1-1

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 37

SOA and Reuse
• Description:

– SOA is an architectural style where existing or new
functionalities are grouped into atomic services

• The goal of SOA is to allow fairly large chunks of functionality to be
strung together to form ad-hoc applications which are built almost
entirely from existing software services

• Benefits:
– Supports large-grained reuse of independently developed

services
• Enhanced productivity and quality through reuse

– Enables increased focus on the core domain
• References:

– http://en.wikipedia.org/wiki/Service_oriented_architecture
– Service-Oriented Architecture: Concepts, Technology and

Design by Thomas Erl

http://en.wikipedia.org/wiki/Service_oriented_architecture
http://www.amazon.com/Service-Oriented-Architecture-SOA-Technology-Computing/dp/0131858580/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189627090&sr=1-1
http://www.amazon.com/Service-Oriented-Architecture-SOA-Technology-Computing/dp/0131858580/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189627090&sr=1-1
http://www.amazon.com/Service-Oriented-Architecture-SOA-Technology-Computing/dp/0131858580/ref=pd_bbs_sr_1/103-2084842-0441447?ie=UTF8&s=books&qid=1189627090&sr=1-1

Copyright 2007 Lockheed Martin Corporation. All rights reserved. 38

Robust Tools
• Description:

– There are many tools available today that actually help in the
development of software

• Standards checkers, and standards checking services, Refactoring
browsers, Test frameworks, Performance monitors, Modeling tools,
especially those with reverse engineering capabilities

– Need to make sure that the selected tools do not drive extra work
• Benefits:

– Improved developer productivity
– Improved quality
– Enablers for iterative development – manual processes not adequate to

support short development cycles
• References:

– http://www.opensourcetesting.org/functional.php
– http://www.opensourcetesting.org/unit_java.php
– http://www.ddj.com/TechSearch/searchResults.jhtml;jsessionid=MPJGH

OHFWKVKCQSNDLOSKH0CJUNN2JVN?queryText=tools

http://www.opensourcetesting.org/functional.php
http://www.opensourcetesting.org/unit_java.php
http://www.ddj.com/TechSearch/searchResults.jhtml;jsessionid=MPJGHOHFWKVKCQSNDLOSKH0CJUNN2JVN?queryText=tools
http://www.ddj.com/TechSearch/searchResults.jhtml;jsessionid=MPJGHOHFWKVKCQSNDLOSKH0CJUNN2JVN?queryText=tools

	A Convergence of Technologies for Better Software� NOW!
	Topics
	Two Categories of SW Errors
	What are the Technologies?
	The Good News
	The Better News
	The Best News
	Who is Involved?
	Some Experiences (1)
	Some Experiences (2)
	Summary
	Questions
	Backup Material
	Agile Development
	Test-Driven Development
	Continuous Integration
	Time-Boxed Development
	Automated Tests
	Early Customer Involvement
	Demonstrate Each Iteration
	User Stories
	Product Backlog
	 Frequent Deliveries
	Clear Product Vision
	Automated Builds
	Pair Programming
	Retrospectives
	Domain-Driven Design
	Ubiquitous Language
	Deep Models
	Core Domain
	Bounded Context
	Anti-Corruption Layer
	Design by Contract
	Patterns
	Refactoring
	SOA and Reuse
	Robust Tools

