

Test and Evaluation of Electromagnetic Railguns

NDIA T&E Conference March 12-15, 2007

500,000 ft Hypervelocity Electromagnetic Launch (MACH 7.5)

Ballistic Trajectory

Hypervelocity Impact (MACH 5.0)

Indirect Fire (200+ nm in 6 minutes)

Fixed and Relocatable Targets at Long Range

Direct Fire (Horizon in 6 seconds)

- Long-Range
- Time-Critical
- Persistent
- All-Weather (24/7)
- No Unexploded Ordnance Issues
- Large Capacity Magazines
- No Propellants
- No Explosive Warheads
- Increased Ship Design Options
- Reduced Ship Vulnerability
 Leverages Navy Investment in
- Integrated Power System

Support for Distributed Ops

Current Facility

Current Facility

SSG Construction

Launch Package

- Total Mass = 2.3-3.4 kg
- Aluminum Slug and Armature
- Nylon Bore Riders
- Design based on earlier work at Kirkcudbright and Greenfarm

Gun - Facility Interfaces

Muzzle Chamber

- 1" Thick A36 Steel Plate
- Bolts Directly to Gun Foundation
- Bolts Directly to Bridge Section
- Adaptable to Variety of Launchers

Recoil Plates •3" Thick A36 Steel Plate •Bolt Directly to the Gun Foundation Plates •Bolt Directly to Underside of SSG

Terminal Area Design

Research . . . Relevant Result

Catch Component

- 7 Each Sand-Filled Steel Boxes, Total of 14 On Hand
 - 4 ft x 4 ft x 3 ft
 - Wt 5740 lbs when Filled
 - 21 ft of Sand along Line of Fire
 - Open Top, Stackable, 4-Way Forklift Entry
- I-Beam Catch Cart
 - Support the First 4 Sand Boxes to Allow Quick Movement & Replacement
 - Runs on Crane Rails Using Mini-Railroad Wheels
- Concrete Blocks
 - Support the Last 3 Sand Boxes

Video of Test Results

Test Results

Shot	Mass (KG)	Charge Voltage (KV)	Peak Current (MA)	Muzzle Velocity (m/s)	Muzzle Energy (MJ)	Efficiency (%)
1	2.4	8.2	1.7	837	0.841	12.6
2	2.41	8.18	1.8	1117	1.5	16.9
3	2.416	7.85	2.35	1560	2.94	24.5
4	2.456	6.25	2.79	1540	2.91	28.3
5	2.456	6.85	2.83	1760	3.8	30.7
6	3.29	6.9	3	1500	3.7	29.4
7	3.29	7.68	3.13	1680	4.64	29.8
8	3.288	8.3	3.09	1850	5.63	30.9
9	3.29	8.6	3.1	1920	6.06	30.9
10	3.29	8.9	3.09	1990	6.51	31
11	3.288	9.2	3.1	2070	7.04	31.4
12	3.346	9.68	3.13	2117	7.5	30.2
13	3.2	9.65	3.09	2146	7.38	29.8

Test Results (continued)

	Mass	Charge Voltage	Peak Current	Muzzle Velocity	Muzzle Energy	Efficiency
Shot	(KG)	(KV)	(MA)	(m/s)	(MJ)	(%)
14	2.46	8.2	1.87	1106	1.5	16.9
15	2.31	8.01	2.46	2005	4.65	27.4
16	2.89	8.89	2.75	2059	6.13	29.3
17	3.29	7.8	3.18	1722	4.87	30.3
18	3.29	7.8	3.18	1717	4.85	30.1
19	3.402	9.69	2.99	2053	7.17	28.9
20	2.892	8.9	2.75	2025	5.93	28.3
21	2.888	8.9	2.75	2019	5.88	28.1
22	2.89	8.9	2.73	2012	5.85	27.9
23	2.454	9.49	3.08	2519	7.79	32.7

Shot 13 Breech Current and Muzzle Voltage

Shot 13 Velocity

- Shot 7
- Muzzle Arc is 500K Amps at 2.3 KV
- 9 PSI Overpressure at 99" from muzzle

Static Xray Image

Shot 4 Xray Image

All images are 3 feet from muzzle

In-Flight Images

Target Impact

Launch Package Results

Recovered from Shot 1

Recovered from Shot 2

Original Launch Package

Bore Life EMLF Testing Concept

• Launcher

nary Research . . . Relevant Resu

- Multi-shot barrel life
- Barrel construction to contain rail repulsive forces
- Scaling from 8MJ (state of the art) to 32MJ \rightarrow 64MJ Muzzle Energy
- Thermal management techniques
- Projectile
 - Gun launch survivability (45 kGee acceleration, Electromagnetic Interference Potential)
 - Hypersonic guided flight for accuracy
 - Lethality mechanics
- Pulsed Power System
 - Energy Density
 - Rep rate operation & thermal management
 - Switching
 - Torque management and multi-machine synchronization (rotating machine)

Milcon Addition

ONR Dr. Elizabeth D'Andrea (Program Manager)

Office of Naval Research (Code 352) 875 N. Randolph Street Arlington, VA 22203 703.588.2962

NSWC

Mr. Charles Garnett (Program Manager)

Naval Surface Warfare Center, Dahlgren (Code 308) 6096 Tisdale Road Dahlgren VA 22448-5156 540.653.3186

Mr. Tom Boucher, P.E. (EMLF Test Director)

Naval Surface Warfare Center, Dahlgren (Code 606) 18236 Thompson Road Dahlgren VA 22448-5116 540.653.6273

Back-up

	 Why is it important? Volume & Precision Fires Time Critical Strike All weather availability Variety of payload packages Scalable effects Deep Magazines Non explosive round/No gun propellant Greatly simplified logistics No IM (Insensitive Munitions) Issues Missile ranges at bullet prices
 What is it? Gun fired with electricity rather than gunpowder Revolutionary <u>250 mile range in 6</u> <u>minutes</u> Mach 7 launch / Mach 5 hit Highly accurate, lethal GPS guided projectile Minimum collateral damage 	 Who needs it? Marines and Army troops on ground Special forces clandestine ops GWOT Suppress air defenses When? Feasibility Demo 2011 System Demo 2015 IOC 2020-2025

Pulse Forming Network Size ¹/₂ * Launch Mass * Muzzle Velocity² Desired Muzzle Energy

Risk Matrix Summary

- Traceability to 64MJ, 6-10 round / min indirect fire weapon system
- Bore Life
 - 32 Mega-Joule (Muzzle Energy) EM Lab Launcher
 - 10kg launch package; full muzzle velocity of 2.5km/sec
 - 20kg launch package with full current of ~5.5MA
 - Demonstrate more than 100 shot bore life
- Containment
 - 32 Mega-Joule Advanced Containment Launcher
 - 10kg launch package; full muzzle velocity of 2.5km/sec
 - 20kg launch package with full current of ~5.5MA
 - 1000+ round predicted containment structural barrel life
 - Design for thermal management at a rate of 6 round / min
 - Design launcher for minimal round dispersion
 - Transportable on pallets and/or in sea containers,
 - Consider marine environment

Recolutionary Research ... Relevant Results Integrated System Demo Strategy

- Spans Basic Research to Full-Scale Demo's
- Parallel development paths via multiple research sites
- Avoids Duplication
- Efficient use of test resources

- Supports both Navy and Army EM Efforts
- Government purpose data rights to permit competition during the acquisition phase.

Coordinated Development!

Bore Life and Containment

Lab Launcher - EMTF

Advanced Containment Launcher

Phase	Phase of Project	Period
Basic	Conceptual Design Trade Studies	7 mos.
Army Add	Trade Studies for Army Application	3 mos.
Option I	Technology Development and Preliminary Design	30 mos.
Option II	Detailed Design, Fabrication and Demonstration	29 mos.

Phase	Phase of Project	Period
Basic	Conceptual Design Trade Studies	7 mos.
Army Add	Trade Studies for Army Application	3 mos.
Option I	Technology Development and Preliminary Design	30 mos.
Option II	Detailed Design, Fabrication and Demonstration	29 mos.

General Atomics Team

Northrop Grumman Team

Projectile Concept Trades

Description of Effort

- Develop long range projectile concept
 - Lethal
 - Consistent with Navy CONOPS
 - Compatible with any EML gun development
- Identify critical development
 - GN&C
 - Aerobody (drag and thermal protection)
 - launched survivability
- Produce a development plan

The Boeing AASP Team

Draper Team

Advanced Pulsed Power

- Rotating Machine
 - Watch Army Effort (Demo in FY08)
 - Navy Specific Critical Component Development
- Advanced Capacitor
 - Increased Energy Density
 - Thermal Management for Multi Shot Operation

Steel Muzzle Chamber Component

- Steel Muzzle Chamber
 - Mates to both SSG & Lab Launcher
 - Bolts to 1st Concrete
 Bridge Section
- Collar Plates Seal Gaps between Launcher & Chamber

Vans on Van Pad

