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Traditional T&E Schedule Estimation

• T&E programs are inherently risky:
– Individual WBS elements carry considerable schedule risk
– There are complex relationships between test objectives, 

outcomes, and future work
– Each outcome has complex risks and consequences
– Not intuitive; difficult to scope
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Traditional T&E Schedule Estimation

• T&E schedules are estimated in variety of ways
– Depends on time, data, precision needed, guidance from 

program office
• Traditionally, 3 ways to estimate T&E schedules:

– Factors based upon historical data from analogous systems
– Parametric Schedule Estimating Relationships (SERs)

• Linking some characteristic system parameter to historical 
schedules

– Detailed bottom-up estimates
• Predominantly driven by projected staffing 

requirements
• Usually assumes only planned tests

Traditional methods do not account for 
stochastic events and feedback loops resulting 

from the recovery from failure
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Traditional T&E Schedule Estimation

• Accounting for risk and unknowns is a historical challenge 
for T&E cost estimation

• Use of historical analogies often fail to adequately account 
for important distinctions in the new system 

• History-based parametric analysis can reasonably estimate 
the T&E schedules, but provide no information about 
critical test elements

• Bottom-up estimates provide a wealth of detail on 
individual test elements
– Doesn’t account for additional unplanned tests resulting from 

test failure
– Schedules are consistently inaccurate and always low 

• Generalized Activity Network (GAN) analysis supports the 
development of more accurate bottom-up SERs
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Generalized Activity Networks (GAN)

• A Generalized Activity Network (GAN) is:
– A cyclical directed process modeling diagram (an 

extension of PERT)
– The modeling capabilities of GANs include:
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Generalized Activity Networks (GAN)

A GAN has as its basic element an activity (u)

1 2
u       (pu, tu, hu, cu, ...)

pu ≡ probability that arc “u” executes
tu ≡ u’s execution time
hu(tu) ≡ probability density function for t
cu ≡ u’s cost: may depend upon t
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GAN Junctions
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GAN Simulations

…into simulations…

Simulate

Our research shows that these simulations provide
a surprising amount of insight, even with few inputs

…that can compute completion time and 
cost for complex spending programs.
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How GANs are Built and Calibrated

• Modeling process:
– Build a network diagram (GAN) to describe possible program 

execution paths
– Estimate parameters: establish random distribution(s) 
– Require probabilities for feedback loops or other event 

outcomes
– Create a discrete-event simulation for that network 

• Parameter estimation: 
– Task durations, cost, and risk levels can be based on:

• Build-up estimates, calibration with historical data, subject matter 
expertise

• Often apply a Weibull distribution (Gladstone-Miller 2002 
DODCAS) to deterministic estimate

– Feedback probabilities can be calibrated with historical data 
from similar programs or subject matter experts
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Example: Repeat-Until-Pass Test GAN
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Example: Repeat-Until-Pass Test GAN

• Durations for Preparation and Testing:
– Uniform Random Variables
– Expectation 1 day & Range 1 day: U(0.5,1.5)

• Durations for Recovery from Test Failure:
– Minor Failure: U(0.5,1.5) Exp. Value: 1 day
– Moderate Failure: U(1.25,2.75) Exp. Value: 2 days
– Major Failure: U(2.0, 4.0) Exp. Value: 3 days
– Note: Dispersion also increases with failure severity

• Duration for activities following success is 0
• Psuccess =  Pfailure = .5
• Pmin = .8 ; Pmod = Pmaj = .1

– 10% of all failures are moderate, and 10% of all failures are major
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Example: Repeat-Until-Pass Test GAN

• Performed Monte Carlo Simulation
• Expected Duration for Test Success: 2.8 days
• Large right-tail dispersion due to geometric distribution from 

inclusion of a probability of test failure
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GAN Advantages

• Hierarchical: can describe and analyze system at any level of 
detail

• Flexible: supports evaluation and decision-making at all levels
• Model iterative processes
• Can provide more information than simple time/cost estimates

– Complete distribution; eliminates need for separate risk analysis
– Identify potential problem activities for risk mitigation

• Often provide useful insight during both design (diagramming) 
and analysis (simulation, analytic equations) phases

• Provides a single integrated approach for understanding task 
interdependencies; identifying high-risk activities; and 
incorporating funding constraints
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GAN Disadvantages

• “Uniqueness” problem
– Data cannot be used for calibration if too program-specific
– Breadth of data as important as depth of data

• May suffer from subjectivity of expert opinion data
– Problem of all bottom-up estimates

• Requires detailed program data
– Data necessary for calibration
– Calibration necessary for meaningful schedule estimates

• “Familiarity” problem:  Although growing, GANs currently 
not widely used for cost analysis
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Calibrating GAN Probabilities

• We consider two common GAN feedback 
processes

– The One “P” Case
• Single feedback loop with a constant probability of 

success
• Preliminary results included in MORS presentation 

– The Two “P” Case
• Successive attempts after the first failure possess a 

constant, but higher, probability of success that the first 
test trial

• Presumes that most of the major problems are at least 
identified after recovery from initial failure implying a 
higher probability of success for subsequent trials
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GAN Probabilities: One “P” Case

• Typically, probabilities of success or failure driven by expert 
opinion

• Probabilities can be appropriately calibrated by historical data
• Assumptions

– Well defined, common test event for commodity/system
– Access to historical data from similar systems 
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GAN Probabilities: One “P” Case

• Considering simple test-block GAN:
– Trials occur until a success is achieved (with probability P for 

each trial)
– Let X be the number of trials until the first success
– X is a geometric random variable with parameter P
– Specifically,

[ ]
p

XE 1
=

• Assuming historical data (of sample size n) on number of trials 
from similar systems can solve for single p* that minimizes the 
sum of squared errors between the expected number of trials 
predicted by the GAN, E[X] ,and the historical data
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GAN Probabilities: One “P” Case

• Thus, if  
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One “P” Case: Proof

• Thus, we can estimate p* by simply by taking the inverse of the 
average of the outcomes of the trials

• Since our problem is only over one dimension, we can simply 
consider looking at the derivative of the function with respect to x

• Taking the derivative of this expression and setting it to zero,
we get that:
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GAN Probabilities: One “P” Case

• This simple, straightforward result is powerful because 
analysts can easily objectively calibrate GAN probabilities

• Further, in absence of historical data, analysts should seek
– Unbiased expert opinion on “average” number of tests until 

success
– Should produce better estimates of realistic probability of 

success than directly asking for them
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GAN Probabilities: Two “P” Case

• Probability of success on first test: P1

• Probability of success on every other test, conditional on 
first test failing:  P2
– Might expect P2>P1 due to knowledge of what failed, 

additional effort spent on that item, etc.
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GAN Probabilities: Two “P” Case

Historical 
Program 

# Trials 
until 

Success

1st Trial 
Success? 

(Yes=1, No=0)

2nd Trial? 
(Did the 1st 
trial fail?)

# of "P2" 
Trials

1 6 0 1 5
2 7 0 1 6
3 4 0 1 3
4 1 1 0 0
5 8 0 1 7
6 1 1 0 0
7 2 0 1 1
8 1 1 0 0
9 12 0 1 11
10 4 0 1 3

• We could calculate a single probability, p, using the previous 
technique
– Method of calibrating P1 and P2 should reduce to One “P” case if 

probabilities are constant

• Consider a test event with the following historical data: 
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• Let if the first trial failed and if it succeeded and 
assume that there are J successes.

• Let represent the number of subsequent trials with a 
probability, p2 ,of success

• As before, we wish to minimize the sum of squared errors 
between the expected number of trials predicted by the GAN 
and the historical data for each decision node:

GAN Probabilities: Two “P” Case

• Let x1 and x2 be decision variables and
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• We can minimize each sum separately, yielding x1 and x2 , and 
thus our P1 and P2

• Using the data from our example we produce the probabilities: 

• Monte Carlo testing demonstrates method to provide robust 
estimation of data generating process even when P1 = P2

GAN Probabilities: Two “P” Case
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Weibull Enveloping Distributions

• Evaluate feasibility of estimating hyper-geometric processes 
through an enveloping Weibull distribution

• Why?
– Hyper-geometric processes and Weibull distributions are 

similarly right tailed
– Weibull distributions are well understood throughout cost 

community and, thus, better accepted than GAN feedback 
simulations

• Study Objective: See if its possible to fit a Weibull to a feedback 
process under ideal conditions, ie. when we actually possess 
full knowledge of the process and relevant statistics
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Weibull Enveloping Distributions

• Method for matching GAN simulation results through Weibull 
distributions:
– Create GAN simulation to generate hyper-geometric data

• Can be calibrated with different underlying probabilities and duration 
distributions

• Produce test data from 10,000 trials to ensure robust characterization of 
data generating process (can employ asymptotic theory)

– Optimize Weibull parameters to fit the distribution to generated data
• Identify appropriate metrics to define “goodness of fit”
• Perform optimization upon selected objective function

– Evaluate “best-fitting” Weibull predictions to simulated results
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Weibull Enveloping Distributions

• Population Data: Data Generating Process
– Relatively straightforward parameters to maximize probability of

successful fit
– Trial Durations ~ Uniform (2,6)
– Feedback Probabilities: 50/50, 80/80, 30/30, 50/80, etc.

• Goodness of fit
– Cost and Schedule Estimates typically reported at the mean 

[expected value], 50% CDF, and 80% CDF
– If we know two of the three, we can optimize the selection of 

Weibull parameters (α,β) to minimize the error between the 
prediction for the third metric and simulated data

– If we assume we only know the expected value of the data, we can
optimize parameters such that we minimize the joint error between 
the 50% and 80% CDF
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Characteristic Result

GAN Simulation and Fitted Weibull
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Weibull Enveloping Distributions

• Our analysis on a variety of simple GAN simulations indicates 
that it is not feasible to adequately envelope a GAN feedback 
loop with a single Weibull distribution

• Enveloping Weibull performs worse under more complex, 
realistic assumptions such as Normal or Weibull distributed 
durations in the population data generating process

• For a few specific cases we were able to fit a Weibull with a 
relatively small mean squared error, e.g. a prediction error of 
less than 20%
– However, calibration was made with our complete knowledge of 

the underlying data generating process, which we would not have 
with real data.
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Weibull Enveloping Distributions

• Successful fit only indicates that it is feasible for a Weibull to 
approximate a specific feedback process not that it can 
actually be implemented with statistical confidence
– Wouldn’t actually possess information on the expected value, 

50%, or 80% CDF with real data from which to optimize Weibull
– Weibull parameters would be calibrated, as always, from outside 

of the estimated process
– Fitting arbitrary points of a CDF does not necessarily indicate a 

minimization of the error between the Weibull and simulated data 
mass functions

• We recommend the continued use of GAN feedback loops to 
simulate feedback processes, such as testing.


