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Traditional T&E Schedule Estimation

T&E Processes [
o /‘%

 T&E programs are inherently risky:

— Individual WBS elements carry considerable schedule risk

— There are complex relationships between test objectives,
outcomes, and future work

— Each outcome has complex risks and consequences
— Not intuitive; difficult to scope




Traditional T&E Schedule Estimation

 T&E schedules are estimated in variety of ways

— Depends on time, data, precision needed, guidance from
program office

« Traditionally, 3 ways to estimate T&E schedules:

— Factors based upon historical data from analogous systems

— Parametric Schedule Estimating Relationships (SERS)

» Linking some characteristic system parameter to historical
schedules

— Detailed bottom-up estimates

« Predominantly driven by projected staffing
requirements

o Usually assumes only planned tests




Traditional T&E Schedule Estimation

« Accounting for risk and unknowns is a historical challenge

for T&E cost estimation

« Use of historical analogies often fail to adequately account
for important distinctions in the new system

« History-based parametric analysis can reasonably estimate
the T&E schedules, but provide no information about
critical test elements

» Bottom-up estimates provide a wealth of detail on
individual test elements

— Doesn’'t account for additional unplanned tests resulting from
test failure

— Schedules are consistently inaccurate and always low

* Generalized Activity Network (GAN) analysis supports the
development of more accurate bottom-up SERS
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Generalized Activity Networks (GAN)

* A Generalized Activity Network (GAN) is:

— A cyclical directed process modeling diagram (an
extension of PERT)

— The modeling capabilities of GANSs include:

iterative
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Generalized Activity Networks (GAN)

A GAN has as its basic element an activity (u)
u (pu’ tu’ hu’ Cus )
£ 2.

Pu = probability that arc “u” executes

t, = Uu’s execution time

hy(tw) = probability density function for t

Cu = u’s cost: may depend upon t




GAN Junctions

GAN Recelvers GAN Transmitters
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GAN Simulations
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LMI How GANSs are Built and Calibrated

* Modeling process:

— Build a network diagram (GAN) to describe possible program
execution paths

— Estimate parameters: establish random distribution(s)

— Require probabilities for feedback loops or other event
outcomes

— Create a discrete-event simulation for that network

« Parameter estimation:

— Task durations, cost, and risk levels can be based on:

» Build-up estimates, calibration with historical data, subject matter
expertise
» Often apply a Weibull distribution (Gladstone-Miller 2002
DODCAS) to deterministic estimate
— Feedback probabilities can be calibrated with historical data
from similar programs or subject matter experts

12




Agenda

Traditional T&E Schedule Estimation
Generalized Activity Networks (GAN)
Example Application: Repeat-until-Pass Test GAN
Advantages and Disadvantages of GAN Approach

Extra Topics (Time Permitting)
— Calibrating GAN Probabilities
— GANSs versus Weibull Distributions

13




Spiral 1 N UM = unmanned
o
S LV = Launch Vehicle
ATP
Des/Fab/Test ESC - Escape
UM D _____ | CEV- Crew Exploration Vehicle
CEV, UM CEV UM Demo :
|
i :
ATP i ! : :
UM Des/Fab | +— CEV1/CEV2 information/technology exchange
Lv, D ----- P( ) UM LV ( > I
[T _
I Recover from moderate failure Lmod
| Recover from major failure t maj

Major Rework

Succeed tweaks_

tsucc Moderate Rework

Rework

Minor Rework

Re-qualificatig,
Rework

LV.
2 D m--- e g System _ P Revory Manned Demo.
i : :lO et <> -------
LV, Qualification : o

Program

Note: >
Rework Note: PF(rework)+ PF(redeisgn):
ATP PFal\ (Rework)
. ___; DeslFab — L/ /N i Prail Redesian)
Man-rated [O0F=1]11o2=110] ) S i
ESC, Escape Program
ATP
Des/Fab To T, T,
D > Stop
Ground & .
Ground Training Sys ' '
' P 1 P
Support Infrastructure Po Vol v
1



Spiral 1 N UM = unmanned
o
S LV = Launch Vehicle
ATP
Des/Fab/Test ESC - Escape
UM D _____ | CEV- Crew Exploration Vehicle
CEV, UM CEV UM Demo :
|
| :
ATP i ! : :
UM Des/Fab | +— CEV1/CEV2 information/technology exchange
Lv, D ----- P( ) UM LV ( > I
[T .
I Recover from moderate failure Lmod
| Recover from major failure t maj
|
ATP |
v
Des/Fg Finin )
Minor ;™
CEVz CEV, ) Succeed tweaks: O —-l—_—_—————m————— Major Rework
succ
tsucc Moderate Rework 3¢ N g--.--.

Rework

Minor Rework

Re-qualificatig,
Des/Fab Rework

LV.
2 D f System ...EPFaI\ (Rework) Manned Demo.
_____ : :lO IA&T '<>-------
LV, Qualification : o

Program Note: >
Rework Note: PF(rework)+ PF(redeisgn):
ATP PFal\ (Rework)
. ___t DeslFab — L/ /N i Prail (Redesign)
Man-rated [O0F=1]11o2=110] ) S i
ESC, Escape Program
ATP
Des/Fab To T, T,
D > Stop
Ground & .
Ground Training Sys ' '
' P 1 P
Support Infrastructure Po Vol v
1



Example: Repeat-Until-Pass Test GAN

S Repeat-Until-Pass Test GAN
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Example: Repeat-Until-Pass Test GAN

&

Durations for Preparation and Testing:
— Uniform Random Variables
— Expectation 1 day & Range 1day.: U(0.5,1.5)

e Durations for Recovery from Test Failure:

— Minor Failure: U(0.5,1.5) Exp. Value: 1 day
— Moderate Failure: U(1.25,2.75) Exp. Value: 2 days
— Major Failure: U(2.0, 4.0) Exp. Value: 3 days

— Note: Dispersion also increases with failure severity
» Duration for activities following success is 0

¢ I:)success = I:)failure = '5

e P.=8: P =P =1

min mod maj ~—
— 10% of all failures are moderate, and 10% of all failures are major
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Example: Repeat-Until-Pass Test GAN
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 Performed Monte Carlo Simulation
« EXxpected Duration for Test Success: 2.8 days

» Large right-tail dispersion due to geometric distribution from
Inclusion of a probability of test failure
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LMl GAN Advantages

« Hierarchical: can describe and analyze system at any level of

detall

* Flexible: supports evaluation and decision-making at all levels
 Model iterative processes

« Can provide more information than simple time/cost estimates
— Complete distribution; eliminates need for separate risk analysis
— Identify potential problem activities for risk mitigation

« Often provide useful insight during both design (diagramming)
and analysis (simulation, analytic equations) phases

* Provides a single integrated approach for understanding task
Interdependencies; identifying high-risk activities; and
iIncorporating funding constraints
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GAN Disadvantages

e “Unigueness” problem

— Data cannot be used for calibration if too program-specific
— Breadth of data as important as depth of data

« May suffer from subjectivity of expert opinion data
— Problem of all bottom-up estimates

 Requires detailed program data
— Data necessary for calibration
— Calibration necessary for meaningful schedule estimates

o “Familiarity” problem: Although growing, GANs currently
not widely used for cost analysis

21
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Calibrating GAN Probabilities

We consider two common GAN feedback
processes

— The One “P” Case

» Single feedback loop with a constant probability of
success

* Preliminary results included in MORS presentation

— The Two “P” Case

e Successive attempts after the first failure possess a
constant, but higher, probability of success that the first
test trial

* Presumes that most of the major problems are at least
identified after recovery from initial failure implying a
higher probability of success for subsequent trials

24




GAN Probabilities: One “P” Case

Rework

PFail
Work | CL Finalize
D—::b s »q

Pass

Typically, probabilities of success or failure driven by expert
opinion

Probabilities can be appropriately calibrated by historical data
e Assumptions

— Well defined, common test event for commodity/system
— Access to historical data from similar systems

25




GAN Probabilities: One “P” Case

» Considering simple test-block GAN.

— Trials occur until a success is achieved (with probability P for
each trial)

— Let X be the number of trials until the first success

— X s a geometric random variable with parameter P
— Specifically,

E[X]z%

« Assuming historical data (of sample size n) on number of trials
from similar systems can solve for single p* that minimizes the
sum of squared errors between the expected number of trials
predicted by the GAN, E[X] ,and the historical data

26




GAN Probabilities: One “P” Case

1
 Thus, if x:F and {b,,b,,b,,....,b }

are the set of outcomes representing the number of trials for
Independent outcomes of the same GAN, we wish to:

min Zn:(x—bi)z

subject to:x>1

« Conveniently, the global minimum is simply Zbi
the mean of the historical data, yielding: p* = '2;

27




One “P” Case: Proof

« Since our problem is only over one dimension, we can simply

consider looking at the derivative of the function with respect to x

Zn:(x_bi)z = Zn:(Xz—ZbiX+bi2) = nxz_zxzn:bi+zn:bi2
i1 = C 2

« Taking the derivative of this expression and setting it to zero,

we get that:

2nx—-2> b =0 =  x=1
=1

 Thus, we can estimate p* by simply by taking the inverse of the
average of the outcomes of the trials

28




GAN Probabilities: One “P” Case

This simple, straightforward result is powerful because
analysts can easily objectively calibrate GAN probabilities

Further, in absence of historical data, analysts should seek
— Unbiased expert opinion on “average” number of tests until
success

— Should produce better estimates of realistic probability of
success than directly asking for them

29




GAN Probabilities: Two “P” Case

Rework

Retest

D Test
i Py

* Probability of success on first test: P,

» Probability of success on every other test, conditional on
first test failing: P,

— Might expect P,>P, due to knowledge of what failed,
additional effort spent on that item, etc.
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GAN Probabilities: Two “P” Case

ES& e Consider a test event with the following historical data:

# Trials 1st Trial 2nd Trial?

Historical until Success? (Did the 1st # of "P2"
Program Success (Yes=1, No=0) trial fail?) Trials

1 6 0 1 5

2 7 0 1 6

3 4 0 1 3

4 1 1 0 0

5 8 0 1 7

6 1 1 0 0

7 2 0 1 1

8 1 1 0 0

9 12 0 1 11

10 4 0 1 3

 We could calculate a single probability, p, using the previous
technique

— Method of calibrating P, and P, should reduce to One “P” case if
probabilities are constant
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GAN Probabilities: Two “P” Case

« Let x, and x, be decision variables and {b;,0,,b;,...,b, }

historical data.

* Let bli = 0 if the first trial failed and bli =1 if it succeeded and
assume that there are J successes.

e Let sz represent the number of subsequent trials with a
probability, p, ,of success

* As before, we wish to minimize the sum of squared errors
between the expected number of trials predicted by the GAN
and the historical data for each decision node:

Z(Xl _bli)z "‘Z (Xz _sz)z

32




GAN Probabilities: Two “P” Case

« We can minimize each sum separately, yielding x, and x, , and

thus our P, and P,

* Using the data from our example we produce the probabilities:

P=x=03

 Monte Carlo testing demonstrates method to provide robust
estimation of data generating process even when P, = P,

33
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Weibull Enveloping Distributions

« Evaluate feasibility of estimating hyper-geometric processes

through an enveloping Weibull distribution

« Why?
— Hyper-geometric processes and Weibull distributions are
similarly right tailed

— Weibull distributions are well understood throughout cost
community and, thus, better accepted than GAN feedback
simulations

« Study Objective: See if its possible to fit a Weibull to a feedback
process under ideal conditions, ie. when we actually possess
full knowledge of the process and relevant statistics
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Weibull Enveloping Distributions

* Method for matching GAN simulation results through Weibull

distributions:

— Create GAN simulation to generate hyper-geometric data

» Can be calibrated with different underlying probabilities and duration
distributions

* Produce test data from 10,000 trials to ensure robust characterization of
data generating process (can employ asymptotic theory)

— Optimize Weibull parameters to fit the distribution to generated data
 Identify appropriate metrics to define “goodness of fit”
» Perform optimization upon selected objective function

— Evaluate “best-fitting” Weibull predictions to simulated results

36




Weibull Enveloping Distributions

» Population Data: Data Generating Process

— Relatively straightforward parameters to maximize probability of
successful fit

— Trial Durations ~ Uniform (2,6)

— Feedback Probabilities: 50/50, 80/80, 30/30, 50/80, etc.

e Goodness of fit

— Cost and Schedule Estimates typically reported at the mean
[expected value], 50% CDF, and 80% CDF

— If we know two of the three, we can optimize the selection of
Weibull parameters (o,) to minimize the error between the
prediction for the third metric and simulated data

— If we assume we only know the expected value of the data, we can
optimize parameters such that we minimize the joint error between
the 50% and 80% CDF
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Weibull Enveloping Distributions

« Our analysis on a variety of simple GAN simulations indicates

that it is not feasible to adequately envelope a GAN feedback
loop with a single Weibull distribution

* Enveloping Weibull performs worse under more complex,
realistic assumptions such as Normal or Weibull distributed
durations in the population data generating process

* For a few specific cases we were able to fit a Weibull with a
relatively small mean squared error, e.g. a prediction error of
less than 20%

— However, calibration was made with our complete knowledge of

the underlying data generating process, which we would not have
with real data.
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Weibull Enveloping Distributions

« Successful fit only indicates that it is feasible for a Weibull to

approximate a specific feedback process not that it can
actually be implemented with statistical confidence

— Wouldn’t actually possess information on the expected value,
50%, or 80% CDF with real data from which to optimize Weibull

— Weibull parameters would be calibrated, as always, from outside
of the estimated process

— Fitting arbitrary points of a CDF does not necessarily indicate a
minimization of the error between the Weibull and simulated data
mass functions

 We recommend the continued use of GAN feedback loops to
simulate feedback processes, such as testing.
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