746th Test Squadron

Innovate, Execute, Excel

Testing the Latest Embedded GPS/INS Hybrid Navigation System for the F-16 Fighting Falcon

U.S. AIR FORCE

13 March 2007

Jim Killian 746 Test Squadron Holloman AFB NM

Integrity - Service - Excellence - Agility

UNCLASSIFIED

Overview

- F-16 LN-260 EGI Test Item
- Approach and Test Methodology
- Test Capabilities Available at 46 Test Group
- LN-260 Overall Test Objectives
- Sequence Selected for Test Beds & Assets
- Truth Reference System to be used
- Summary / Lessons Learned / Conclusions
- Questions

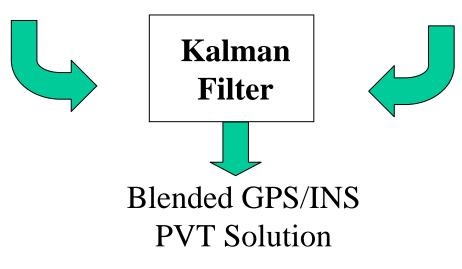
F-16 Fighting Falcon

Integrated INS & GPS Navigation System for USAF and European Participating AF (EPAF)

- Integrated Navigation system provides
 - Attitude
 - Navigation (PVT)
 - Position
 - Velocity
 - Time

"Excellence Through Innovation"

Current Navigation System


Separate
GPS and
INS units

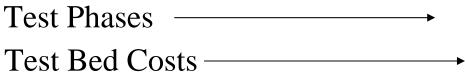
INS: Ring Laser Gyro Inertial Navigator

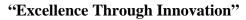
GPS: 5 Channel PPS Satellite Receiver

- LN-260 NG Aircraft Navigation and Attitude
 - Inertial Navigation System (INS) < .8 nmi/hr RER</p>
 - New Fiber Optic Gyros
 - GPS: RC GEM-VI, 24 channel L1 & L2 receiver
 - Single Unit; smaller size, weight, cost, power use
- Embedded GPS in INS (EGI), with Kalman Filter

LN-260

- Provides 3 separate solutions:
 - INS only, GPS only, Blended'Tightly coupled'
- Same Performance ?
- Effective and Suitable ?
 Requires T&E




DYNAMICS: Gs & Rates

Notional Test Approach

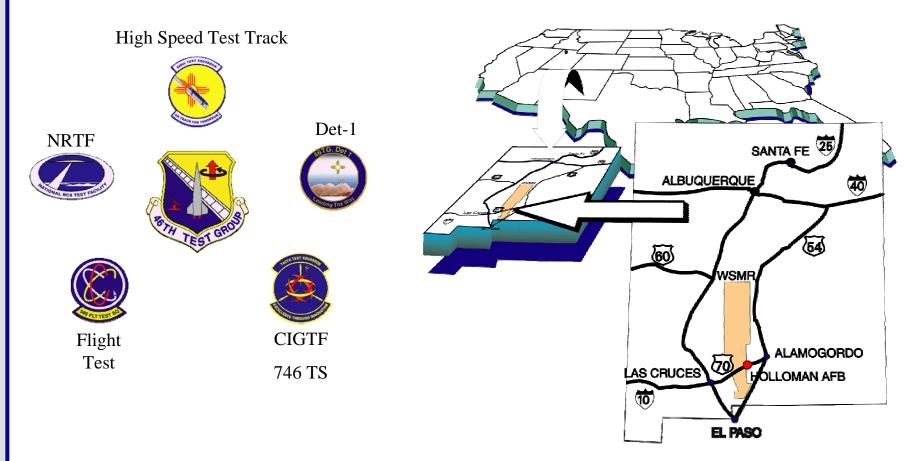
SENSORS: Accelerometers ~ Gs Gyros ~ Rotational Rates (GPS Receiver ~ Noise/Signal) \$ \$ \$

Crawl - Walk - Run

Discover and correct issues <u>early</u> at a <u>lower</u> cost

Mature the system design

- Methodically verify proper functionality of navigation unit
 - Physical and functional checkouts
 - Precision three axis table attitude and rotations
- Establish baseline performance
 - Benign, controlled, repeatable environment
 - Recheck as appropriate


- Performance and Characterization
 - Gradually increase stresses on sensors and system to the specification limits while measuring performance in realistic profiles that are controlled and repeatable
 - The greater the dynamics and signal stress the more exposed existing problems become
 - Use state-of-the-art Truth Reference System

Test Location: 46 Test Group Holloman AFB NM

- State-of-the-art Test Capabilities
- 746 TS; Central Inertial & GPS Guidance Test Facility (CIGTF)

- 5 Test Squadrons within 46th Test Group
 - 586 FLTS: Flight Test Squadron
 - 746 TS: INS & GPS Guidance Test Squadron (CIGTF)
 - 781 TS: National RCS Test Facility (NRTF)
 - 846 TS: Holloman High Speed Test Track
 - Det 1: White Sands Missile Range Test Agent
- 746 TS / CIGTF: Has complete range of GPS & INS Navigation and Guidance test capabilities
 - Satellite Ref Station (SRS)
 - Mobile SRS (MRS)

Available Live Nav Test Beds

Dynamic Range Vehicles; Track, Van, Helo, C-12, Fighters

High Speed Precision Test Track

Land Navigation Vehicles

Helicopter

C-12

T-38

F-16, F15

Inertial and GPS Lab Facilities

Advanced Inertial Test Lab

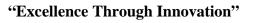
ab Seismically Stable Table

M&S Navigation T&E Lab

Precision 3 Axis tables

with Temperature Chamber

120" Precision Centrifuge


"Excellence Through Innovation"

Test Objectives for LN-260 EGI

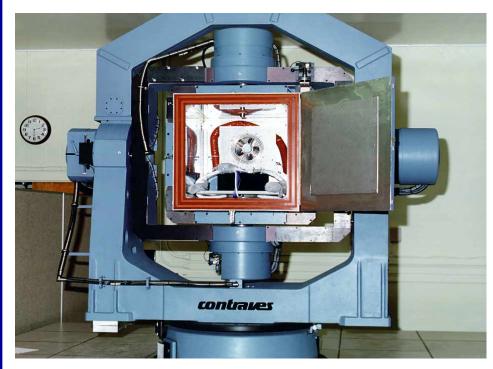
- Verify the F-16 LN-260 EGI performance complies with the published specifications and characterize significant aspects without specification
- Functional
 - Check physical, power and data properties
 - Demonstrate operation of interfaces and EGI modes
 - Baseline navigation outputs
- Performance
 - Evaluate the navigation performance under realistic operational and environmental conditions
- Characterization
 - Characterize calibration errors
- Areas of concern include effect of temperature, G and vibration on navigation performance

- Bench top physical and functional checks
- Precision 3 Axis table position/rotations
 - 24 position tests at temperature variations
 - Inertial sensor calibrations
- Modeling and Simulation; NavTEL
- Van land navigation vehicle, low dynamics
- C-12 cargo aircraft, low-med dynamics
- Precision 3 Axis inertial calibration recheck
- T-38 Fighter aircraft, med-high dynamics
- Environmental: altitude, vibration, high G

Low Cost Preparatory

Med Cost Comprehensive Controlled environment

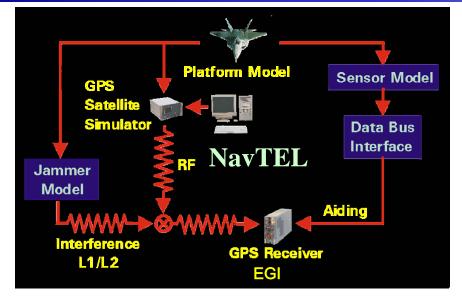
High Cost Most realistic environments


Increased risk

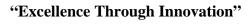
3 Axis Rate Table 53Y

Precision 3 Axis: Position, Rotation, Temperature Tests

- Payload (200 lb)
- Accuracy (1 arcsec)
- Gimbal Rates (±750 deg/sec)
- Chamber (-55 to +85 deg C)


- Functional Alignment and Navigation
- INS Calibration Validation
 - -- 24 Positions (1g Environment)
 - -- Rotation Rates (20 deg/sec)
- Calibration / sensor baselines

Modeling & Simulation


Navigation T&E Laboratory (NavTEL)

- Hardware-in-the-Loop Design
- Trajectories (Real & Simulated)
- Models: Sensor & Aiding, w/ Realistic Errors
- GPS Simulators (Spirent 4760 / 7700)
- EGI Simulator (CAST) Hybrid, > Fidelity
- Select Parameter Controlled On the Fly
- Interference Signal Generators (Jammers)
- Wave Front Simulator (Multi-Element Antenna Test)

-Controlled Signal Injection

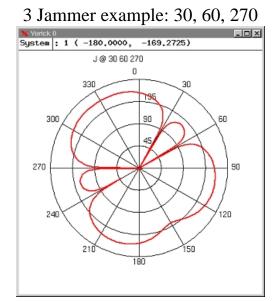
- INS & GPS profiles
- Models: Baro, Doppler, +
- Special Navigation Ops
- Jamming (broad scope)
- RAIM Integrity Monitoring
- SAASM Security Functions

CRPA Wave Front Testing

GPS

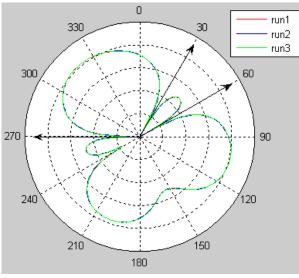
, Signal

Antenna Gain


GPS Signal (attenuated) GPS Signal

- Null Steering Antenna Tests
- Embedded Jammer Approach
- Jamming; up to 16 Sources
- Precise and Repeatable Tests
- Coherent Arrival Vectors, GPS and Jamming
- Controlled Signal Location, Timing & Phase

Coherent Wave Front Sim for GPS and Jamming signals



Predicted Model

"Excellence Through Innovation"

Controlled Reception Pattern Antenna

Measured Results

17

Low Dynamic Test

Land Navigation Vehicle

- Velocity (26.8 m/sec)
- Acceleration (1g)
- Navigation Modes
- GPS Jamming
- Precision Reference

Medium Dynamic Test

Cargo Aircraft (C-12J)

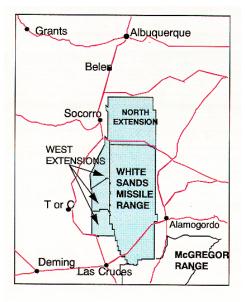
- Velocity (140-250 kts)
- Acceleration (2.5g)
- Navigation Modes
- GPS Jamming
- Precision Reference

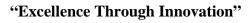
High Dynamic Test

Hi Performance (T-38)

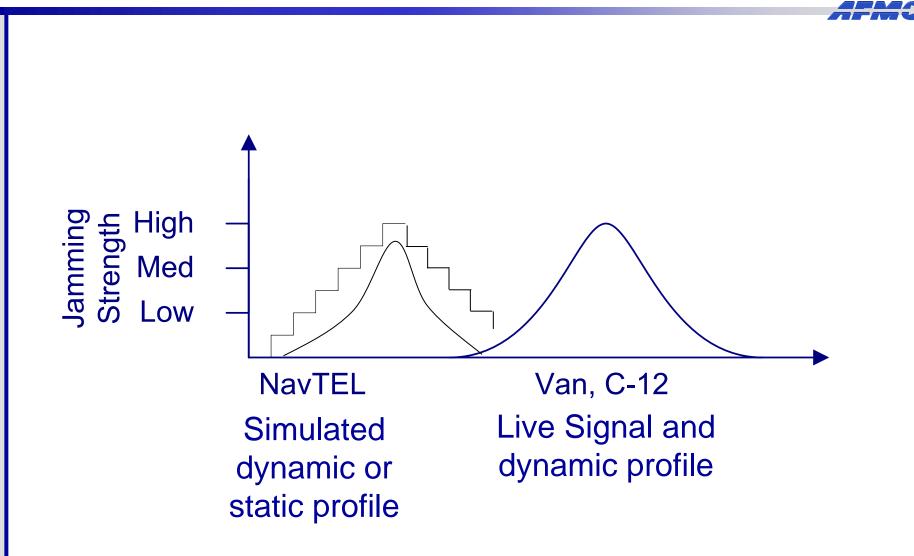
- Velocity (Mach 1.1)
- Acceleration (7.2g)
- Air to Grnd scenarios
- Air to Air scenarios
- Precision Reference

Field Jamming Assets


• GPS Interference; Performance under signal stress


Jamming Vans

<image>


WSMR Test Range

Test specification requirements not reached on previous test beds

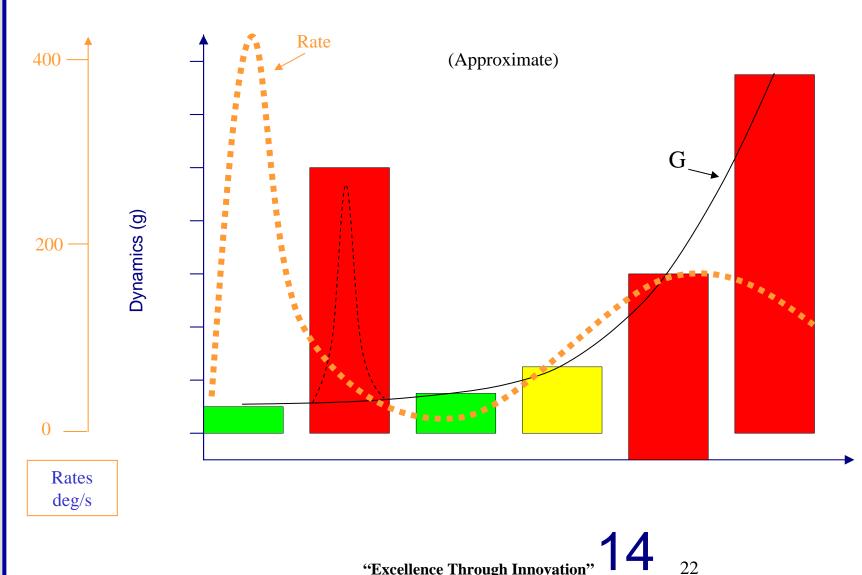
Altitude / Temp Chamber

- Payload Navigating
- Pressure Altitude 80K' +
- 50-60K' planned
- Temp to match altitude -100 deg to +350 deg
- Humidity 5% 95%

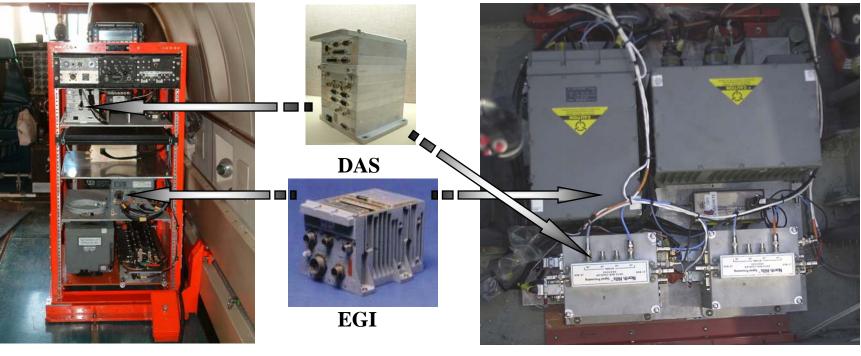
Vibration test beds

Centrifuge 120" Radius

- Frequency/G controlled
- F-16 vibration profile
- M-60 Gatling gun
- Up to 1750 lbs force
- 2-2000 Hz (50#, 70g)
- 1 inch travel


- Payload (100 lb)
- Accuracy (1 ppm)
- Acceleration (0.5 to 50 g)
- 13.5 g planned
- Test Item Fixture:
 - Fixed or
 - Counter- Rotating

Test Bed Gs and Rates



CIGTF Reference System (CRS) - Pallets

Rack Mount

Standalone

(**C-12J** / **Van**)

(T-38) Fighter Inertial Navigation System (FINS) Rack Mount (Development)

CRS - Subsystem Configuration Accuracy

[Subsystem]		RMS Position (m)			
Configuration		Horz		Vert	3D
[1] [2] GPS Code		2.00		2.25	3.25
[1] [2] DGPS Code 1		1.25<>1.75		1.0<>1.75	1.5<>2.5
Carrier ²		0.30		0.20	0.35
[4] RRS / <u>STARS</u> STS Absolute / Relative		1.40 / <u>0.14</u> 0.071 / 0.0014		1.00 / <u>0.10</u> 0.05 / 0.0010	1.7 / <u>0.17</u> 0.087 / 0.0017
SRS Range Constraints: 1300-500nm 250-100nm Differential GPS					
[Subsystem]	RMS Velocity (m/s)				
Configuration	East	Nort	า	Up	3D
[1] INS (EGI)	0.010	0.01)	0.010	0.017
[3] INS (ESNU)	0.005	0.00	5	0.005	0.010
Attitude Accuracy: 20 arcsec (Roll, Pitch, Heading)					

SUMMARY

- CRAWL
 - Benchtop physical and functional tests
 - 53Y 24 precision position, attitude and rotations
 - Baseline performance for inertial portion

• WALK

- NavTEL Modeling & Simulation
- Van 2D low dynamics, low rates
- Baseline GPS, INS and Hybrid solutions
- RUN
 - C-12, 3D med dynamics, med rates
 - T-38, 3D high dynamics, high rates
- Environmental
 - Centrifuge; Altitude chamber; Vibration profiles
 - Higher risk and stress modes

25

- Often PM tendency is to streamline the T&E phases due to Cost and Schedule pressures
- Testing <u>WILL</u> find unanticipated problems, guaranteed.
- A thorough and systematic government independent T&E approach will actually reduce ultimate cost and schedule by finding/correcting problems <u>early</u>
 - "Rely on Independent Government Test"
 - "Focus on Performance"

(Words of Gen Randolph, JNC 2004)

- Follow well planned graduated test approach that manages risk and finds and fixes problems early
- Avoid cutting plan to save time or \$, which often increases Cost and Schedule.
- Thorough Benchtop and 3 Axis table tests are valuable in uncovering problems early, prior to van and flight testing
- Match tests to realistic environment as practicable
- Apply increased stress in a controlled fashion
- Place high risk tests at the end to reduce possible early schedule impacts due to system failure

- LN-260 EGI
- Wide range of test capabilities in house

– "Crawl, Walk, Run"

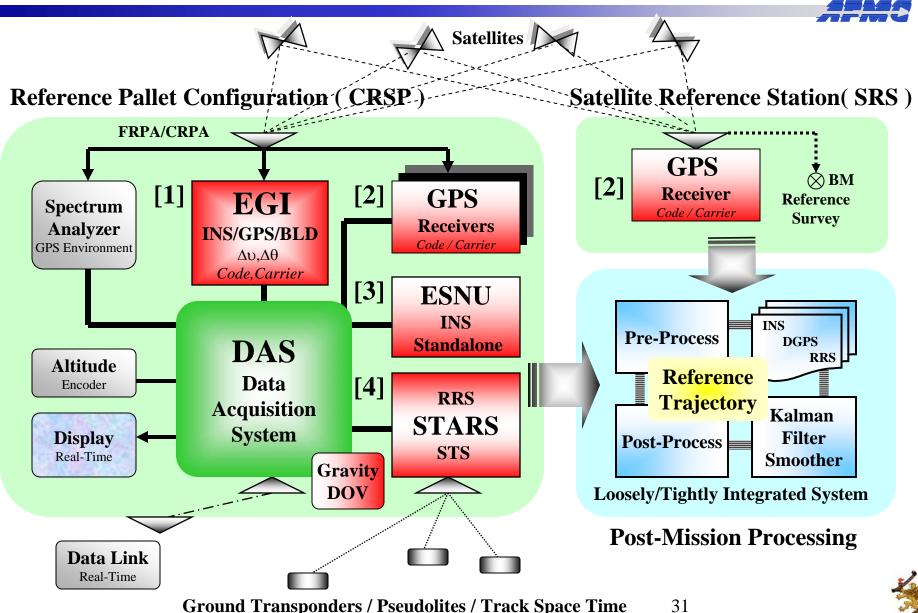
28

- Facilitates testers familiarity with test item
- Establish Baseline performances
- Comprehensive; identify & isolate problems early
- Risk managed to reduce 're-fly' schedule impact
- Mature system design in most cost efficient method
- Continuity with same team of experts throughout

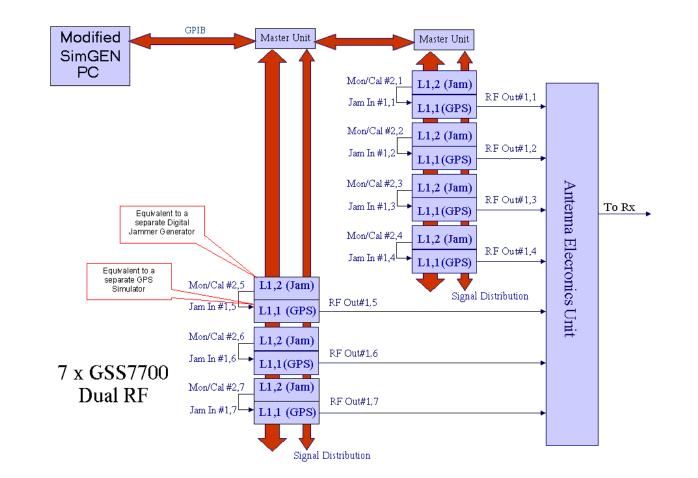
All to support the Warfighter

Questions?

"Excellence Through Innovation"



- CIGTF Reference System Block Diagram
- CRPA Wave Front System Block Diagram


CIGTF Reference System Architecture

Wave Front CRPA Simulation

Backup Slide

