The Critical Link Between Test & Evaluation and Modeling & Simulation

Dr. Mark J. Kiemele Air Academy Associates

A Tutorial for NDIA's 23rd Annual National Test and Evaluation Conference Hilton Head Island, SC March 12, 2007

Introductions

Name

- Organization
- Job Title/Duties
- Experience in DOE, T&E, M&S

Agenda

Some Basic Definitions

- Test and Evaluation (Experimental) Approaches
- DOE: the Gateway to Transfer Functions and Optimization
- Break
- Monte Carlo Simulation, Robust Design, and Tolerance Allocation
- Examples of Iterative Use of Modeling and Simulation
- Summary of "Modeling the Simulator"

About Models

All models are simplifications of reality.

There is always a tradeoff as to what level of detail should be included in the model:

<u>If too little detail</u>, there is a risk of missing relevant interactions and the resultant model does not promote understanding.

<u>If too much detail</u>, there is a risk of overly complicating the model and actually preclude the development of understanding.

The "goodness" of a model depends on the extent to which it promotes understanding.

Types of Models

High-Fidelity Models:

- many variables and many interactions
- highly detailed and complex
- needed for visualization
- difficult to manipulate

Low-Fidelity Models:

- much fewer number of variables
- can be manipulated more easily
- provides higher-level view of system
- presents a more aggregate view of the system

Types of Simulation

Deterministic Simulation:

- for each combination of inputs parameters, there is one and only one output value
- y = f(x)

Monte Carlo Simulation:

- provides for variability in the inputs
- y = f(x + variation), where the variation is modeled as some probability distribution

Discrete Event Simulation:

- studies a sequence of countable events
- assumption is that nothing of importance takes place between events

©2007 Air Academy Associates, LLC. Do Not Reproduce.

©2007 Air Academy Associates, LLC. Do Not Reproduce.

Experimental Methods

Traditional Approaches

- One Factor at a Time (OFAT)
- Oracle (Best Guess)
- All possible combinations (full factorial)

Modern Approach

 Statistically designed experiments (DOE) ... full factorial plus other selected DOE designs, depending on the situation

OFAT (One Factor at a Time)

One factor at a time results versus optimal results

Oracle (Best Guess)

Run	W	Р	Е	С	Α	Y
1	1	2	1	1	1	5
2	1	1	1	1	1	6
3	2	2	1	1	1	5
4	2	1	1	1	2	6
5	1	2	2	2	2	7
6	1	1	2	2	2	8
7	2	2	2	2	2	10
8	2	1	2	2	1	11

All Possible Combinations (Full Factorial)

DOE Helps Determine How Inputs Affect Outputs

Simplify and Perfect

Exact Transfer Function

Engineering Relationships

- F = ma

The equation for the impedance (Z) through this circuit is defined by:

$$Z = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

The equation for magnetic force at a distance X from the center of a solenoid is:

$$H = \frac{NI}{2\ell} \left[\frac{.5\ell + x}{\sqrt{r^2 + (.5\ell + x)^2}} + \frac{.5\ell - x}{\sqrt{r^2 + (.5\ell - x)^2}} \right]$$

Where

Simplify and Perfect

- N: total number of turns of wire in the solenoid
 - I: current in the wire, in amperes
 - r : radius of helix (solenoid), in cm
 - ℓ : length of the helix (solenoid), in cm
 - x: distance from center of helix (solenoid), in cm
 - H: magnetizing force, in amperes per centimeter

Catapulting Power into Design of Experiments

Statapult[®] Catapult

©2007 Air Academy Associates, LLC. Do Not Reproduce.

The Theoretical Approach (cont.)

$$\begin{split} \mathfrak{l}_{b}\ddot{\theta} &= \mathfrak{r}_{F}\mathsf{F}(\theta)\sin\theta\cos\varphi - (\mathsf{Mgr}_{G} + \mathsf{mgr}_{B})\sin\theta \qquad \qquad \\ \tan\phi &= \frac{D - \mathfrak{r}_{F}\sin\theta}{d + \mathfrak{r}_{F}\cos\theta}, \\ &\qquad \\ \frac{1}{2}\,\mathfrak{l}_{b}\dot{\theta}^{2} &= \mathfrak{r}_{F} \oint_{\Theta}^{\Theta}\mathsf{F}(\theta)\sin\theta\cos\varphi\,d\theta - (\mathsf{Mgr}_{G} + \mathsf{mgr}_{B})(\sin\theta - \sin\theta_{o}), \\ &\qquad \\ \frac{1}{2}\,\mathfrak{l}_{b}\dot{\theta}^{2}_{1} &= \mathfrak{r}_{F} \int_{\Theta}^{\Theta}\mathsf{F}(\theta)\sin\theta\cos\varphi\,d\theta - (\mathsf{Mgr}_{G} + \mathsf{mgr}_{B})(\sin\theta_{1} - \sin\theta_{o}), \\ &\qquad \\ \mathsf{x} &= \mathsf{v}_{B}\cos\left(\frac{\pi}{2} - \theta_{1}\right)\mathsf{t} - \frac{1}{2}\mathfrak{r}_{B}\cos\theta_{1} \qquad \qquad \\ \mathsf{y} &= \mathfrak{r}_{B}\sin\theta_{1} + \mathsf{v}_{B}\sin\left(\frac{\pi}{2} - \theta_{1}\right)\mathsf{t} - \frac{1}{2}\mathsf{g}\mathsf{t}^{2}, \\ &\qquad \\ \mathfrak{r}_{B}\sin\theta_{1} + (\mathsf{R} + \mathfrak{r}_{B}\cos\theta_{1})\tan\left(\frac{\pi}{2} - \theta_{1}\right) - \frac{\mathsf{g}}{2\mathsf{V}_{B}^{2}}\frac{(\mathsf{R} + \mathfrak{r}_{B}\cos\theta_{1})^{2}}{\cos^{2}\left(\frac{\pi}{2} - \theta_{1}\right)} = 0, \\ &\qquad \\ \frac{\mathsf{gl}_{0}}{\mathsf{4r}_{B}}\frac{(\mathsf{R} + \mathfrak{r}_{B}\cos\theta_{1})^{2}}{\cos^{2}\left(\frac{\pi}{2} - \theta_{1}\right)\left[\mathfrak{r}_{B}\sin\theta_{1} + (\mathsf{R} + \mathfrak{r}_{B}\cos\theta_{1})\tan\left(\frac{\pi}{2} - \theta_{1}\right)\right]} \\ &= \mathfrak{r}_{F}\int_{\Theta}^{\Theta}\mathsf{F}(\theta)\sin\theta\cos\varphi\,d\theta - (\mathsf{Mgr}_{G} + \mathsf{mgr}_{B})(\sin\theta_{1} - \sin\theta_{0}). \end{split}$$

Statapult[®] DOE Demo (The Empirical Approach)

Actual **Coded Factors Response Values Factors** Ŧ $\mathbf{Y}_1 \quad \mathbf{Y}_2$ S Run Α Β Β AB Α 144 2 -1 -1 +1 1 144 3 -1 +1 -1 2 160 2 +1 -1 -1 3 160 3 +1 +1 +1 4 Avg – Avg + Δ

ACADEMY ACADEMY ASSOCIATES Simplify and Perfect

The Beauty of Orthogonality

A Full Factorial Design for 3 Factors A, B, and C, Each at 2 levels:

	Run	A	В	С	AB	AC	BC	ABC
-	1	-	-	-	+	+	+	-
	2	-	-	+	+	-	-	+
	3	-	+	-	-	+	-	+
	4	-	+	+	-	-	+	-
	5	+	-	-	-	-	+	+
	6	+	-	+	-	+	-	-
	7	+	+	-	+	-	-	-
	8	+	+	+	+	+	+	+
2007	7 Air Academy As							

Simplify and Perfect

©2007 Air Academy Associates, LLC. Do Not Reproduce.

Aircraft Equations

- $C_{L} = .233 + .008(P)^{2} + .255(P) + .012(R) .043(WD1) .117(WD2) + .185(WD3) + .010(P)(WD3) .042(R)(WD1) + .035(R)(WD2) + .016(R)(WD3) + .010(P)(R) .003(WD1)(WD2) .006(WD1)(WD3)$
- $C_{D} = .058 + .016(P)^{2} + .028(P) .004(WD1) .013(WD2) + .013(WD3) + .002(P)(R) .004(P)(WD1) .009(P)(WD2) + .016(P)(WD3) .004(R)(WD1) + .003(R)(WD2) + .020(WD1)^{2} + .017(WD2)^{2} + .021(WD3)^{2}$
- $$\begin{split} C_{Y} = & -.006(P) .006(R) + .169(WD1) .121(WD2) .063(WD3) .004(P)(R) + .008(P)(WD1) .006(P)(WD2) .008(P)(WD3) .012(R)(WD1) .029(R)(WD2) + .048(R)(WD3) .008(WD1)^{2} \end{split}$$
- $$\begin{split} C_{M} = & .023 .008(P)^{2} + .004(P) .007(R) + .024(WD1) + .066(WD2) .099(WD3) .006(P)(R) + \\ & .002(P)(WD2) .005(P)(WD3) + .023(R)(WD1) .019(R)(WD2) .007(R)(WD3) + .007(WD1)^{2} \\ & .008(WD2)^{2} + .002(WD1)(WD2) + .002(WD1)(WD3) \end{split}$$
- $$\begin{split} C_{\text{YM}} = & .001(\text{P}) + .001(\text{R}) .050(\text{WD1}) + .029(\text{WD2}) + .012(\text{WD3}) + .001(\text{P})(\text{R}) .005(\text{P})(\text{WD1}) .004(\text{P})(\text{WD2}) .004(\text{P})(\text{WD3}) + .003(\text{R})(\text{WD1}) + .008(\text{R})(\text{WD2}) .013(\text{R})(\text{WD3}) + .004(\text{WD1})^2 + .003(\text{WD2})^2 .005(\text{WD3})^2 \end{split}$$
- $C_{e} = .003(P) + .035(WD1) + .048(WD2) + .051(WD3) .003(R)(WD3) + .003(P)(R) .005(P)(WD1) + .005(P)(WD2) + .006(P)(WD3) + .002(R)(WD1)$

Hierarchical Transfer Functions

Modeling The Drivers of Turnover

©2007 Air Academy Associates, LLC. Do Not Reproduce.

DOE "Market Research" Example

Suppose that, in the auto industry, we would like to investigate the following automobile attributes (i.e., factors), along with accompanying levels of those attributes:

A: Brand of Auto:	-1 = foreign		+1 = domestic
B: Auto Color:	-1 = light	0 = bright	+1 = dark
C:Body Style:	-1 = 2-door	0 = 4-door	+1 = sliding door/hatchback
D:Drive Mechanism:	-1 = rear wheel	0 = front wheel	+1 = 4-wheel
E: Engine Size:	-1 = 4-cylinder	0 = 6-cylinder	+1 = 8-cylinder
F: Interior Size:	-1 ≤ 2 people	0 = 3-5 people	+1 ≥ 6 people
G: Gas Mileage:	-1 ≤ 20 mpg	0 = 20-30 mpg	+1 ≥ 30 mpg
H:Price:	-1 ≤ \$20K	0 = \$20-\$40K	+1 ≥ \$40K

In addition, suppose the respondents chosen to provide their preferences to product profiles are taken based on the following demographic:

Simplify and Perfect

J: Age:	$-1 \le 25$ years old	+1 \geq 35 years old	
K: Income:	-1 ≤ \$30K	+1 ≥ \$40K	
L: Education:	-1 < BS	+1 ≥ BS	
2007 Air Academy Associates, LLC	Do Not Reproduce.	Page 28	

DOE "Market Research" Example (cont.)

Question: Choose the best design for evaluating this scenario

Answer: L_{18} design with attributes A - H in the inner array and factors J, K, and L in the outer array, resembling an L_{18} robust design, as shown below:

									L K	-	+ -	- +	+ +	- -	+ -	- +	+ +		
									J	-	-	-	-	+	+	+	+		
Run*	Α	В	С	D	Ε	F	G	Н		y ₁	y ₂	y 3	y 4	y 5	y 6	y 7	y 8	ÿ	S
1	-	-	-	-	-	-	-	-											
2	-	-	0	0	0	0	0	0			Segn	nenta	tion of	of the	popu	lation	or		
3	-	-	+	+	+	+	+	+			Ū								
4	-	0	-	-	0	0	+	+				Res	spond	dent F	<u>Profile</u>	<u>es</u>			
5	-	0	0	0	+	+	-	-											
6	-	0	+	+	-	-	0	0											
7	-	+	-	0	-	+	0	+											
8	-	+	0	+	0	-	+	-											
9	-	+	+	-	+	0	-	0											
10	+	-	-	+	+	0	0	-											
11	+	-	0	-	-	+	+	0											
12	+	-	+	0	0	-	-	+											
13	+	0	-	0	+	-	+	0											
14	+	0	0	+	-	0	-	+											
10	+	0	+	-	0	+	0	-											
10	+	+	-	+	0	+	-	0											
10	+	+	0	-	+	-	0	+											
10	+	+	+	0	-	0	+	-											
* 18	differ	ent p	orodu	uct pr	ofiles	S				•									
©2007 Air	Acade	my As	ssocia	tes, LL	.C. Do	Not F	Reproc	luce.					F	⊃age	29				

Simplify and Perfect

Multiple Response Optimization Simulation Example

©2007 Air Academy Associates, LLC. Do Not Reproduce.

Simplify and Perfect

Expected Value Analysis (EVA)

Previously, we discussed variability in the outputs in great detail. However, the inputs also have variability.

If a product has never been produced, how do we know what the distribution of the output is? What is the expected value and variance of y?

- What is the shape of the output (y) distribution?
- What is the mean or expected value of the y distribution?
- What is the standard deviation of the y distribution?

Simplify and Perfect

©2007 Air Academy Associates, LLC. Do Not Reproduce.

The process of quantifying the sensitivity of the output (y) dpm to changes in the input variables' (X's) standard deviations. It provides the designer the ability to perform cost/benefit tradeoffs via assignment of standard deviations to the input variables.

resistor, R₁ or R₂, would have the greater impact on the dpm of Z (impedance)?

Simplify and Perfect

Tolerance Allocation Example (cont.)

A reduction of R_1 by 50% reduces dpm by an order of magnitude X, while R_2 has little impact.

Tolerance Allocation Table										
N = 10,000 (in defects per million)										
Impedance Table										
R1 R2										
-50% Sigma	372.40	34,683								
-25% Sigma	8,058	36,849								
-10% Sigma	23,906	35,663								
Nominal	39,220	39,657								
+10% Sigma	59,508	37,556								
+25% Sigma	92,398	47,317								
+50% Sigma	148,113	46,801								

A reduction of R_1 's standard deviation by 50% combined with an increase in R_2 's standard deviation by 50%

 $R_1 \sim N(50, 1^2)$

$$R_2 \sim N(100, 3^2)$$

results in a dpm = 1,254.

©2007 Air Academy Associates, LLC. Do Not Reproduce.

Examples of Simulation and High Performance Computing (HPC)

Simulation of stress and vibrations of turbine assembly for use in nuclear power generation

Automotive

Simulation of underhood thermal cooling for decrease in engine space and increase in cabin space and comfort

Evaluation of dual bird-strike on aircraft engine nacelle for turbine blade containment studies

Electronics

Simplify and Perfect

Aerospace

Evaluation of cooling air flow behavior inside a computer system chassis

©2007 Air Academy Associates, LLC. Do Not Reproduce.

Page 40

Power

Examples of Computer Aided Engineering (CAE) and Simulation Software

Mechanical motion: Multibody kinetics and dynamics ADAMS® DADS

Implicit Finite Element Analysis: Linear and nonlinear statics, dynamic response MSC.Nastran[™], MSC.Marc[™] ANSYS® Pro MECHANICA ABAQUS® Standard and Explicit ADINA

Explicit Finite Element Analysis : Impact simulation, metal

CFX-4, CFX-5 FLUENT®, FIDAP™ PowerFLOW®

forming

LS-DYNA RADIOSS

STAR-CD

©2007 Air Academy Associates, LLC. Do Not Reproduce.

Examples of Computer Aided Engineering (CAE) and Simulation Software (cont.)

Preprocessing: Finite Element Analysis and Computational Fluid Dynamics mesh generation ICEM-CFD

> Gridgen Altair® HyperMesh® I-deas® MSC.Patran TrueGrid® GridPro FEMB ANSA

Postprocessing: Finite Element Analysis and Computational Fluid Dynamics results visualization Altair® HyperMesh® I-deas MSC.Patran FEMB

EnSight FIELDVIEW ICEM CFD Visual3 2.0 (PVS) COVISE

©2007 Air Academy Associates, LLC. Do Not Reproduce.

<u>Multidisciplinary Design Optimization (MDO):</u> A Design Process Application

Mastery of interactions between the disciplines (or, subsystems) is as important as the methods & tools used within a single discipline

Latin Hypercube Sampling

- Method to populate the design space when using deterministic simulation models.
- Design space has k variables (or dimensions).
 Ex: Assume k = 2
- Suppose a sample of size n is to be taken; Stratify the design space into n^k cells.
 Ex: Assume n = 5; n^k = 5² = 25
 Note: there are n strata for each of the k dimensions.
- Each of the n points is sampled such that each marginal strata is represented only once in the sample.

Note: each sample point has its own unique row and column.

Applying Modeling and Simulation to Automotive Vehicle Design

Introduction to High Throughput Testing (HTT)

- A recently developed technique based on combinatorics
- Used to test myriad combinations of many factors (typically qualitative)
 where the factors could have many levels
- Uses a minimum number of runs or combinations to do this
- Software (e.g., ProTest) is needed to select the minimal subset of all possible combinations to be tested so that all n-way combinations are tested.
- HTT is not a DOE technique, although the terminology is similar
- A run or row in an HTT matrix is, like DOE, a combination of different factor levels which, after being tested, will result in a successful or failed run
- HTT has its origins in the pharmaceutical business where in drug discovery many chemical compounds are combined together (combinatorial chemistry) at many different strengths to try to produce a reaction.
- Other industries are now using HTT, e.g., software testing, materials discovery, interoperability testing, IT (see IT example on next page)

HTT Example

- An IT function in a company wanted to test all 2-way combinations of a variety of computer configuration-related options or levels to see if they would function properly together.
- Here are the factors with each of their options:

Motherboards (5)	:	Gateway, ASUS, Micronics, Dell, Compaq
RAM (3)	:	128 MB, 256 MB, 512 MB
BIOS (3)	:	Dell, Award, Generic
CD (3)	:	Generic, Teac, Sony
Monitor (5)	:	Viewsonic, Sony, KDS, NEC, Generic
Printer (3)	:	HP, Lexmark, Cannon
Voltage (2)	:	220, 110
Resolution (2)	:	800x600, 1024x768

- How many total combinations are there?
- What is the minimum number of these combinations we will have to test (and which ones are they) in order to determine if every 2-way combination (e.g., Dell Bios with Teac CD) will indeed work properly together?
- To answer this question, we used Pro-Test software. The answer is 25 runs and those 25 combinations are shown on the next page.

High Throughput Testing (HTT) (for all two-way combinations)

	5 Levels	3 Levels	3 Levels	3 Levels	3 Levels 5 Levels		2 Levels	2 Levels
	Motherboard	RAM	BIOS	CD	Monitor	Printer	Voltage	Resolution
Case 1	ASUS	256 MB	Dell	Generic	Viewsonic	Lexmark	110 V	800 x 600
Case 2	Compaq	512 MB	Dell	Teac	Sony	HP	220 V	1024 x 768
Case 3	Gateway	128 MB	Generic	Sony	KDS	Cannon	220 V	800 x 600
Case 4	Dell	128 MB	Award	Teac	NEC	Cannon	110 V	1024 x 768
Case 5	Micronics	256 MB	Generic	Teac	Generic	Lexmark	220 V	1024 x 768
Case 6	Gateway	256 MB	Award	Sony	Sony	HP	110 V	1024 x 768
Case 7	Micronics	512 MB	Award	Generic	Viewsonic	Cannon	220 V	1024 x 768
Case 8	ASUS	512 MB	Generic	Teac	KDS	HP	220 V	1024 x 768
Case 9	Compaq	128 MB	Award	Generic	Generic	HP	110 V	800 x 600
Case 10	Micronics	512 MB	Generic	Teac	Sony	Lexmark	110 V	800 x 600
Case 11	Dell	256 MB	Award	Generic	KDS	Lexmark	110 V	1024 x 768
Case 12	Gateway	512 MB	Dell	Sony	Generic	Lexmark	110 V	1024 x 768
Case 13	Compaq	256 MB	Generic	Sony	Viewsonic	Cannon	220 V	1024 x 768
Case 14	ASUS	128 MB	Dell	Sony	NEC	Cannon	220 V	800 x 600
Case 15	Micronics	128 MB	Dell	Sony	KDS	Lexmark	220 V	800 x 600
Case 16	Gateway	128 MB	Generic	Teac	Viewsonic	HP	110 V	800 x 600
Case 17	Dell	128 MB	Dell	Sony	Sony	Cannon	110 V	1024 x 768
Case 18	ASUS	256 MB	Award	Sony	Generic	Cannon	220 V	1024 x 768
Case 19	Compaq	512 MB	Dell	Sony	NEC	Lexmark	110 V	800 x 600
Case 20	Gateway	256 MB	Generic	Generic	NEC	Cannon	220 V	800 x 600
Case 21	Micronics	512 MB	Generic	Teac	NEC	HP	220 V	800 x 600
Case 22	ASUS	256 MB	Generic	Generic	Sony	HP	110 V	800 x 600
Case 23	Dell	512 MB	Generic	Sony	Viewsonic	HP	220 V	1024 x 768
Case 24	Compaq	256 MB	Dell	Generic	KDS	Cannon	220 V	1024 x 768
Case 25	Dell	128 MB	Generic	Sony	Generic	HP	110 V	800 x 600

©2007 Air Academy Associates, LLC. Do Not Reproduce.

ASSO

Simplify and Perfect

CIATES

Example of Iterative Approach to Modeling and Simulation to Optimize Transmission Performance

Technologies Used on Transmission Project

High Throughput Testing (HTT)

To generate a minimal number of test cases; in this scenario, 11 combinations of 29 variables that would allow testing all two-way combinations on Easy 5. This made running the Easy 5 simulator much easier, without interruption.

DFSS Master: for Robust Design and Expected Value Analysis (Monte Carlo Techniques)

Highly Orthogonal Latin Hypercube Sampling

To populate the design space with test cases which are highly orthogonal. Typically used with deterministic simulation to screen out the CDPs and also to use modeling DOEs on the simulator to generate transfer functions which characterize the simulator

DOE PRO: for Multiple Response Optimization

Environments Where Simulation and Modeling Is Beneficial

- A high number of design variables
- A substantial number of design subsystems and engineering disciplines
- Interdependency and interaction between the subsystems and variables
- Multiple response variables
- Need to characterize the system at a higher level of abstraction
- Time and/or space must be compressed

For Further Information, Please Contact

Mark J. Kiemele Air Academy Associates, LLC 1650 Telstar Drive, Ste 110 Colorado Springs, CO 80920

Toll Free: (800) 748-1277 or (719) 531-0777 Facsimile: (719) 531-0778 Email: aapa@airacad.com Website: www.airacad.com

©2007 Air Academy Associates, LLC. Do Not Reproduce.

Simplify and Perfect