

JPM IP and the Future of Respiratory Protection: Operational and Technical Perspectives

Karen McGrady, Ph.D. Director, Test & Evaluation Program Lead, Future Filtration

Distribution Statement A. Approved for public release; distribution is unlimited. Unclassified

Program Overview

The Joint Project Manager for Individual Protection (JPM-IP) is Responsible for the Development, Procurement, Fielding, and Overall Life Cycle Management of all CBRN Individual Protective Equipment Programs and Reports to the Joint Program Executive Officer for Chemical & Biological Defense (JPEO-CBD).

Future Respiratory Protection Initiative

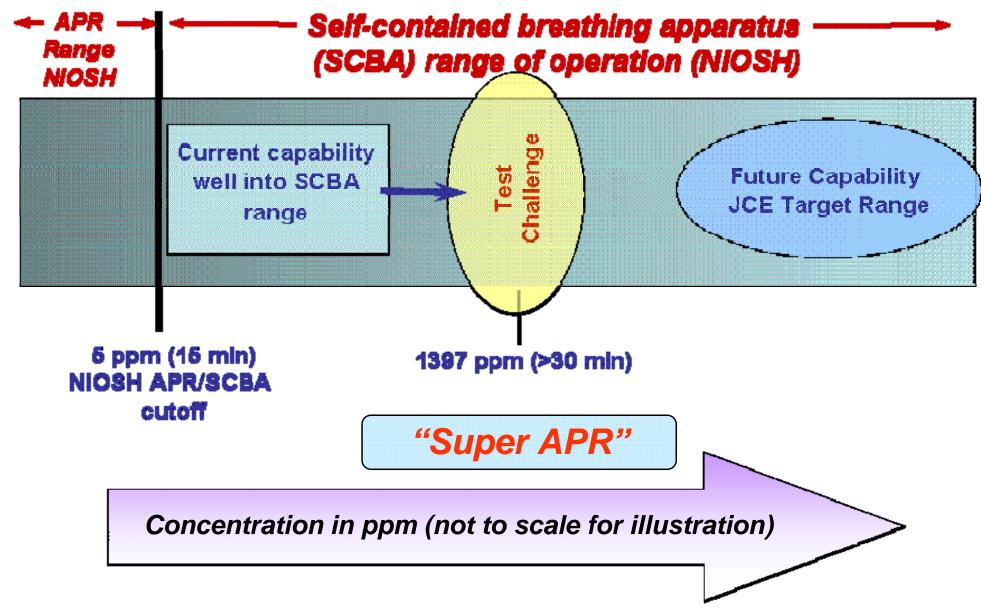
Our objective is to explore leading edge technologies that have the potential to advance respiratory and ocular protection into new frontiers of capability and performance

Operational Need You Already Know: Lighten the Load

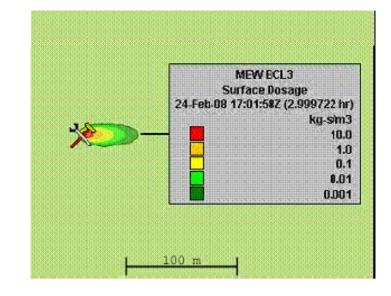
- Personal
 - Breathing resistance
 - Temperature and sweat control
 - Psychological/Cognitive
 - Field of view, visual acuity fogging and lens distortion reduction
 - Weight/volume
- Logistics

• Cost

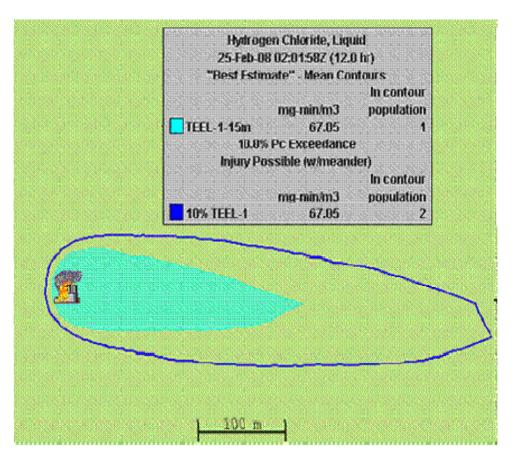
Operational Need You Already Know: Deliver Enhanced Performance


- <u>Advanced broad spectrum capability against</u> <u>TIC threats</u>
- Advanced performance under broad spectrum of conditions
 - -Variable breathing rates
 - -Variable temperature and humidity
 - -Variable battlefield contaminant concentration
- Advanced integration— SaaS Concept
 - -Platform, subsystem, system
 - •Body armor
 - •Helmet
 - •Sighting systems
 - •Cockpit, vehicle control
 - •Life support systems
- Advanced system integrity assessment
 - -Service Life Indicator

Perform and Integrate



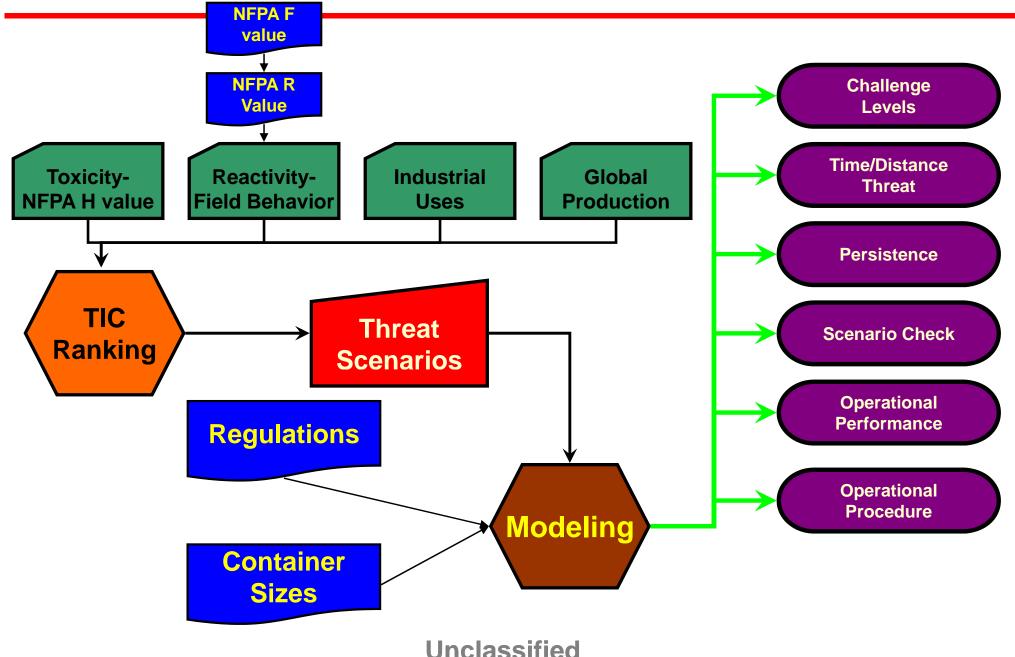
What's New: Approaches to Development of TIC Protection—Capability in Context



What's New: Understanding behavior of industrial chemicals in the operational environment

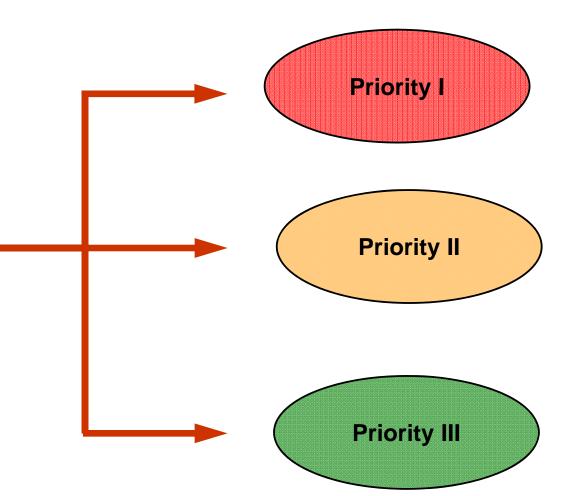
inputs:

- (1) Chemical Reactivity
- (2) Decay rate fed into model
- (3) Container Regulations



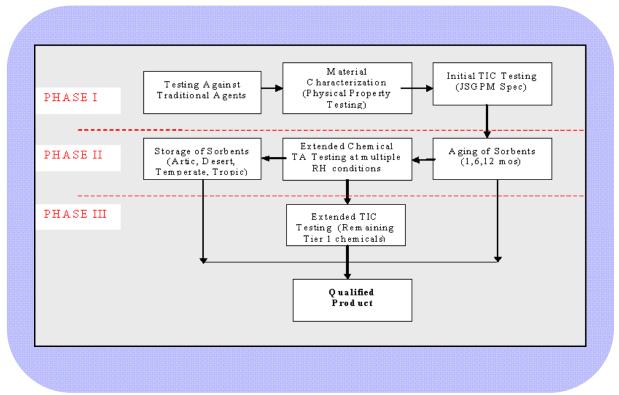
Outputs:

(1) Major By-product: Hydrogen Chloride (2) Release Modeled as such


What's New: Approaches to Development of TIC Protection—JSGPM Prioritization Approach

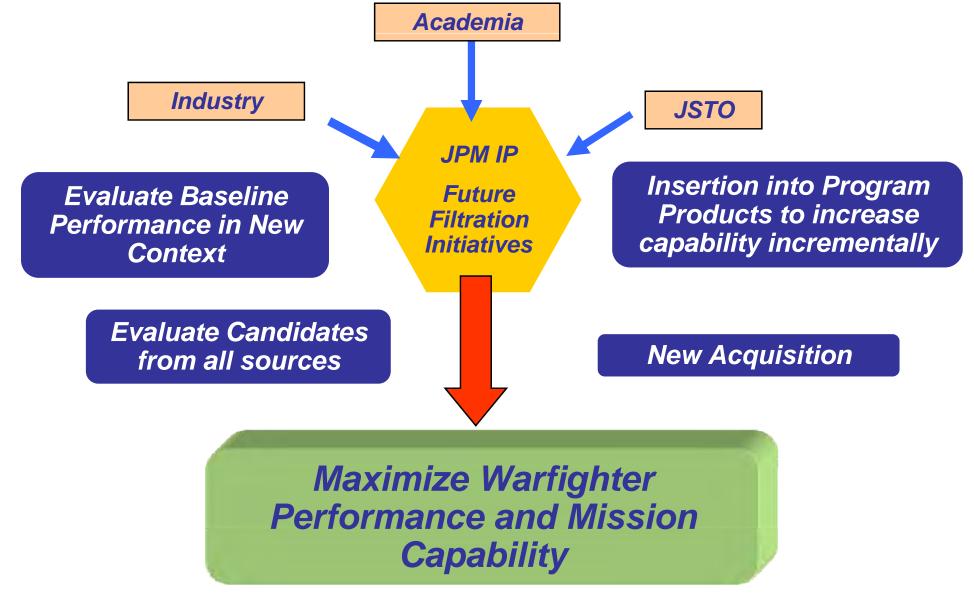
What's New: Synthesis of 3 Tier Hierarchy of Capability

Process results employed to generate 3 tiers of required and desired capability


What's New: Preliminary Ranking

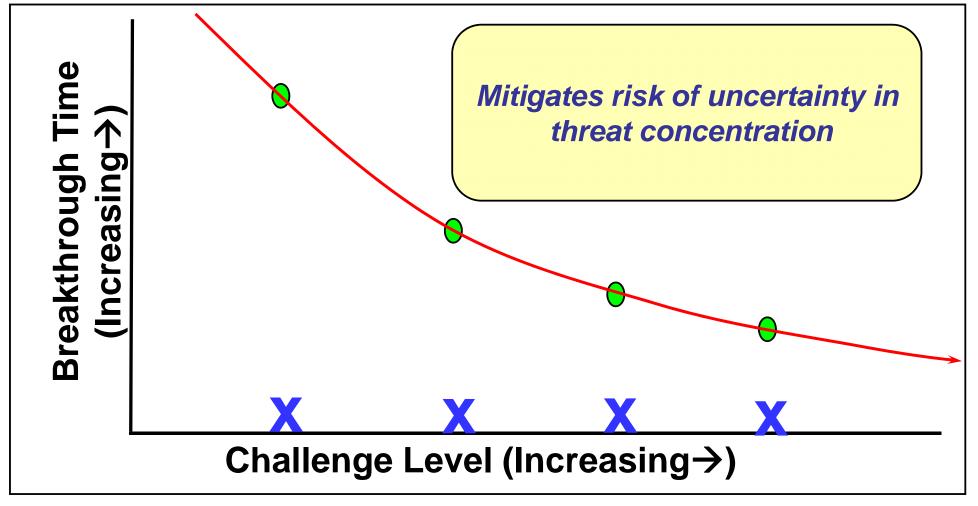
Chemical	Production Rating	Usage Rating	NFPA Toxicity Rating	NFPA Flammability Rating	NFPA Reactivity Rating	Reactivity Score	Overall Score	Ranking
Ammonia	4	4	3	1	0	0.5	10.50	
Chlorine	3	4	3	0	0	0	10.00	
Hydrogen Fluoride	2	4	4	0	1	0.5	9.50	
Sulfuric Acid	3	4	3	0	2	1	9.00	
Hydrogen Chloride	3	3	3	0	1	0.5	8.50	
Nitric Acid	3	1	4	0	1	0.5	7.50	
Acrylonitrile*	4	1	4	3	2	2.5	6.50	
	-		The above are	the Tier 1 Chemica	ls			
Sulfur Dioxide	2	1	3	0	0	0	6.00	
Sulfur Trioxide	3	1	3	0	2	1	6.00	
Hydrogen Sulfide	3	1	4	4	0	2	6.00	
Nitrogen Dioxide	1	2	3	0	0	0	6.00	
Allyl alcohol*	4	0	4	3	1	2	6.00	
Acrolein*	4	0	4	3	3	3	5.00	
Formaldehyde	2	2	3	4	0	2	5.00	
Hydrogen Cyanide	3	1	4	4	2	3	5.00	
Boron Trifluoride	1	0	4	0	1	0.5	4.50	
Phosgene	1	0	4	0	1	0.5	4.50	
Methyl isocyanate*	4	2	1	3	2	2.5	4.50	
Hydrogen Bromide	1	0	3	0	0	0	4.00	
Phospshorus Trichloride	1	0	4	0	2	1	4.00	
			The above are	the Tier 2 Chemica	ls			•
Tungsten Hexafluoride	0	0	4	0	1	0.5	3.50	
Methyl mercaptan*	2	0	4	4	1	2.5	3.50	
Hydrazine*	3	0	4	4	3	3.5	3.50	
Boron Trichloride	1	0	3	0	2	1	3.00	
Carbon Disulfide	2	0	3	4	0	2	3.00	
Fluorine	1	0	4	0	4	2	3.00	
Toluene disocyanate*	1	0	3	1	2	1.5	2.50	
Phosphine*	1	0	4	4	2	3	2.00	
Ethylene Oxide	2	0	3	4	3	3.5	1.50	
Arsine	0	0	4	4	2	3	1.00	
Diborane	0	0	4	4	3	3.5	0.50	
		-	The Above are	the Tier 3 Chemica	ls			
				bjective Chemicals				
				SSITIED				

What's New: Short Term Technical Strategy


- Pursue promising candidates responding to RFI
- Candidate assessment via FASQ and new material qualification protocols
- Fast Track—contenders move into later phases of assessment quickly

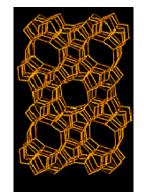
Unclassified

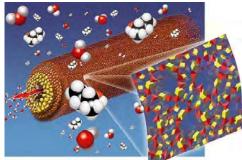
What's New: Long Term Technical Strategy



Unclassified

What's New: Approaches to Development of TIC Protection—How We Test

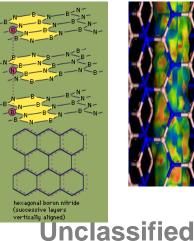

- Test range of concentrations
 - Performance curve generated vs. single data point
 - Extrapolation of performance for any vignette

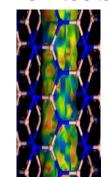


What are we looking for?

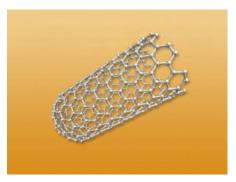
- Innovative materials
- "Frontier ideas"
 - Filtration
 - Life support gas storage/generation
- **Range of Technical Maturity**

Zeolites



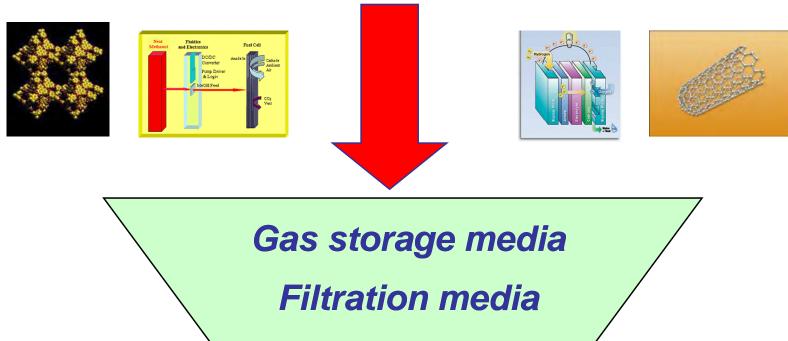

"Reticular"

Chemistry


Hybrid Membrane Technology

BN Molecular Architecture

Carbon Nanostructures



What are we looking for?

Creative propagation

Apply technology created for other purposes as a solution to a new problem:

Example: Fuel cell technologies

Future ?

What are we looking for?

Integrated CBR/head trauma protection?

<u>Tell us what's</u>

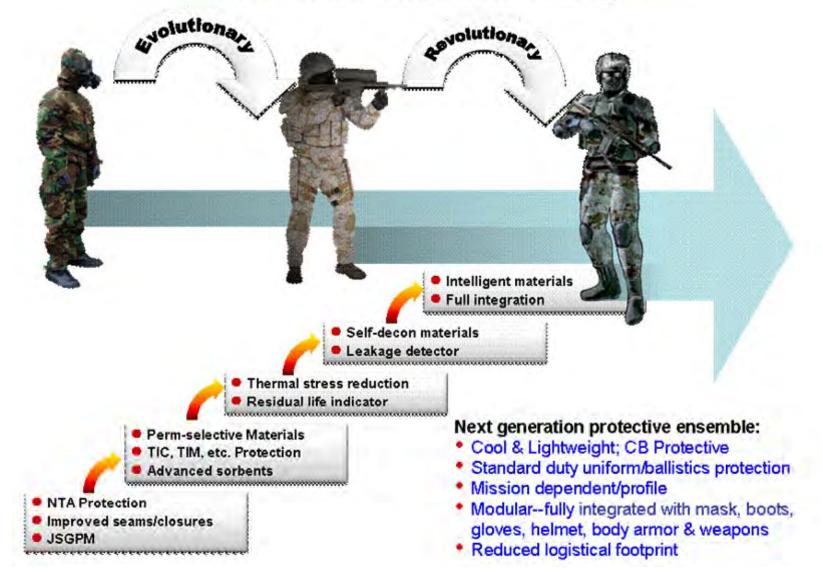
_possible

probable

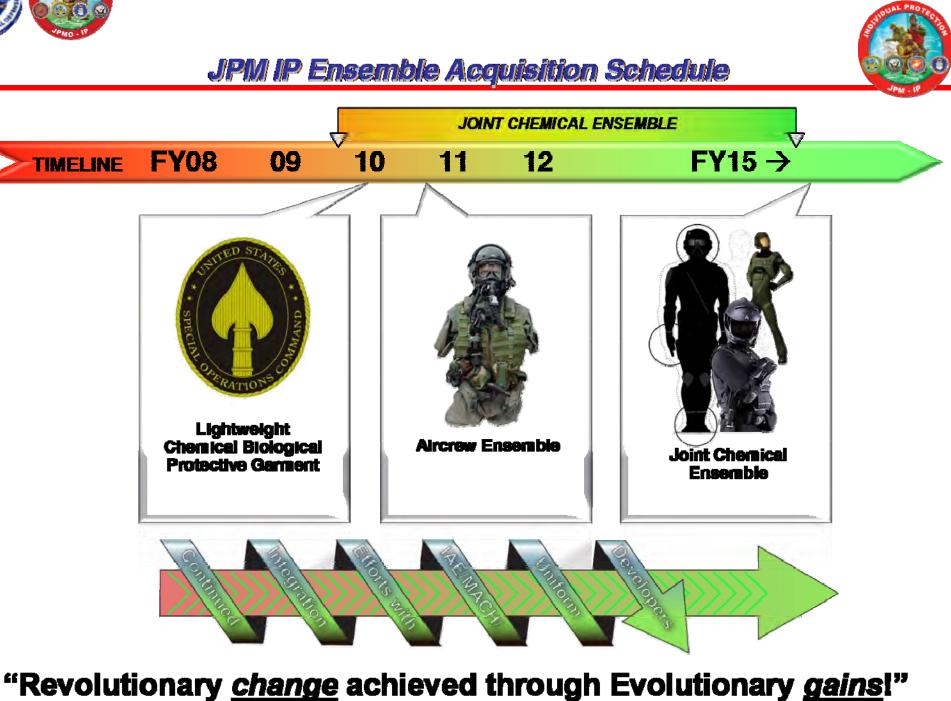
practical

Lighter, faster Level A?

Tandem power/respiratory gas generation?


Unclassified

Advances in APR/SCBA hybrids?



Unclassified

Unclassified

Upcoming Business Opportunities

PROGRAM	EVENT DESCRIPTION	YEAR
Future Filtration Initiative	RFI Release July 2008	FY08
Lightweight Chemical- Biological Protective Garment	Industry Day Sept 2008	FY08
Joint Chemical Ensemble	Industry Day 3 rd Qtr-FY10 for Potential Aviation Ensemble Improvements	FY10
Joint Chemical Ensemble	Next Generation Protective Ensemble RFI Release 3 rd Qtr-FY12	FY12

JPM IP Points of Contact

- Joint Project Manager Individual Protection
 - Mr. William D. Hartzell
 - (703) 617-2444
 - william.hartzell@usmc.mil
- Deputy Joint Project Manager Individual Protection
 - Mr. Mike Stevens
 - (703) 617-2440
 - joseph.m.stevens@usmc.mil
- Director, Test & Evaluation, Program Lead, Future Respiratory Protection Initiative
 - Dr. Karen McGrady
 - (703) 617-2441
 - karen.a.mcgrady@usmc.mil
- Director, Future Acquisition
 - Dr. Gene Stark
 - (703) 617-2439
 - gene.stark@usmc.mil
- Director, Systems Engineering
 - Ms. Deborah Singleton
 - (703) 617-2427
 - deborah.singleton@usmc.mil
- Director, Logistics
 - Mr. Robert Wattenbarger
 - (703) 617-2410
 - robert.wattenbarger@usmc.mil

Future Respiratory Protection Initiative Points of Contact

- Mr. Nick Hanak
 - Project Manager, Future Respiratory Protection Initiative
 - (703) 617-2467
 - <u>nhanak@jrad.us</u>
- Mrs. Brenda Russell
 - Test Coordinator
 - (703) 617-2446
 - russellbs@jpmoip.org