

Future Small Arms Technology Plan Development

The Fusion of Science and Science Fiction

Joel M. Goldman

Chief, JSSAP Office

JSSAP's Future Small Arms Technology Plan The Fusion of Science and Science Fiction

Briefing Outline

Purpose Futures I: The Science Fiction Writers Futures II: The Scientists, Engineers and Military Follow-on Activities: Plan Development

JSSAP's Future Small Arms Technology Plan The Fusion of Science and Science Fiction

Purpose

Develop the Foundations of a Mid-Far Term Technology Investment Strategy for The Joint Service Small Arms Program

JOINT SERVICE SMALL ARM

Who: Principally Science Fiction Writers

When: 11-12 March 2008

What: Broad-based Concepts Identified and Assessed

- Positives
- Negatives
- Enhancements
- Potential

The Generation of Concepts That Will Lead to Creation of a Warfighter Capable of Overwhelmingly Defeating the Enemy Combatant of the Future

The Science Fiction Writers

Charles Gannon

S. M. Stirling

Will McCarthy

Kathleen Goonan

Jeffery Carver

Arlan Andrews

Matt Armstrong

John Hemry

Michael Swanwick

The Generation of Concepts That Will Lead to Creation of a Warfighter Capable of Overwhelmingly Defeating the Enemy Combatant of the Future

Sampling of Concepts

Sheddable Exoskeleton

Brain Plasticity

Odors

Artificial Muscles

Prosthetics as Fighting Aids

Kamikaze UAV Bombers

Stealth via No Emissions

Robotic Dog ("Snoopy") **Persian Donkey** G-D-H (Girlfriend – Dog – Hawk) **Understand Motivation of Enemy** Smart Dog Tag **Psychic Potential Personal Strap-on Jets Zero Point Energy** Antimatter **Panic Generator Explosive Suppressor Nutraceuticals Climate Change**

Holographic Deception "Mouse"/Camera

Intelligence Gathering – 10 Concepts

Human Factors – 18 Concepts

Increased Firepower – 18 Concepts

Increased Survivability – 5 Concepts

Increased Battlefield Impact – 23 Concepts

Futures I Example Concepts

Intelligence Gathering

Understand motivation of enemy

MOUT/counter-insurgent operations where an enemy is not in uniform. **Pros:** Interpret actions as being friendly/hostile. Predictability, Diffuse confrontations, Empowering the warfighter **Cons:** Requires training, Leaves the decision in warfighters hands

Human Factors

Artificial muscles

For large muscle control and fine muscle control. May enable microsurgery on the battlefield **Pros:** Provides superhuman strength, reduces fatigue **Cons:** Unintended consequences

Increased Survivability

Odors

Demographic/friendly force specific products **Pros:** Differentiates, allows IFF **Cons:** One aspect of info (not 100% reliable) May be easy to spoof if the predominate odors are due to cosmetics or laundry.

Increased Battlefield Impact

Nanoparticle dust information gathering

Projectile-based dispersal of small "dust sized" information gathering particles. Pros: Remote, versatile Lower interception/jamming potential Con: Environmental issues (wind, fans, etc)

Enhanced Firepower

Zero Point Energy

Tapping energy from the quantum vacuum. Nanotech batteries may use this technology. **Pros:** Inexpensive, freely available energy **Cons:** No technology to harvest or utilize

Futures II The Scientists, Engineers and Military

Who: SME's from Military, Industry, Academia, Government and National Labs
 When: 30 April-1 May 2008
 What: Technologies Mapped to Concepts and Assessed
 Concepts Assessed wrt Empowerment of Small Arms Platforms

- Lethality/Incapacitation
- Network Integration
- Overall Integration

Identify the Concepts That Can Empower the Warfighter's Small Arms Platform

Human Factors Example Output Part I

Augment the Warfighter Mobility Via Sheddable Exoskeleton

Concept	Technology	Short Term Feasibility	Long Term Feasibility	Assessment with Support Rationale
Augment the war fighter mobility by a sheddable exoskeleton	Biomechanics	Н	H	 Greater Load – Short Term/ Medium Greater warfighter agility – Long Term/Low Lack of acceptance from user Biomechanical limitations of body Scalable complexity

Feasibility Ranking Legend: U = Undetermined, L = Low feasibility, M = Medium feasibility, H = High feasibility Assessment to include challenges to implementation and concept/technology maturity

Human Factors Example Output Part II

Augment the Warfighter Mobility Via Sheddable Exoskeleton

Concept or Technology	Platform	Application or Linkage to Small Arms	Network Centric Integration	Improved Lethality or Incapacitation	Integration of Network centric & Lethality or Incapacitation	Assessment with Support Rationale
Biomechanics Actuators/power DARPA SARCOS ONR Lightweight materials	All platforms	Y	N/A	Υ	N/A	 Leverage shock mitigation work in shipping sensitive materials Weight and power concerns Maturity Level Short Term – Medium (load carriage) Long Term – High (agility) Recommendation - Continue funding Customized applications Worth link to prosthetion
Sensor						Partial exoskeleton

Application/Linkage Ranking Legend: Y = Yes, N = No

Network Centric Integration Ranking Legend: U = Undetermined Risk, L = Low Risk, M = Medium Risk, H = High Risk Improved Lethality/Incapacitation Legend: U = Undetermined, Y =Yes, N = No Integration of Network Centric & Lethality/Incapacitation Legend: U = Undetermined Risk, L = Low Risk, M = Medium Risk,

H = High Risk

What's Next?

Complete the Future Tech Assessment Report Brief at National Small Arms Center Meeting Solicit White Papers Submissions Develop the Technology Plan

Forge a Technology Investment Strategy That Will Lead to Small Arms Systems Capable of Overwhelmingly Defeating the Any Enemy Combatant of the Future

