DEFENCE

DÉFENSE

Canadian Small Arms Demonstration Project

Mr. Paul Harris, Mr. Gilles Pageau, LCol Mike Bodner, LCol. Jacques Levesque, LCol. Luc Angiolini

National Defense Industrial Association International Infantry and Joint Services Small Arms Systems Annual Symposium May 2008

Recherche et développement pour la défense Canada

Defence Research and Development Canada

Background

Soldier System Vision of the Canadian Forces The Soldier as an integrated weapons platform: a "System of Systems"

Background

Capital Projects and Capability Development Plan Support the Soldier System Vision of the Canadian Forces

Clothe the Soldier +

Soldier System 2020

Integrated Soldier Systems Program (ISSP) Small Arms Replacement Project (SARP) II

Background

S&T Projects Support the Soldier System Vision

Background: SARP II

- In Oct 2007 the Options Analysis Phase of the Small Arms Replacement Project II (SARP II) was approved
- **SARP II** is a joint omni-bus project to deliver a modern, networked, integrated direct fire, multi-effect, portable antipersonnel and anti-material capability that includes weapons, fire control, munitions, training systems and logistic support for the 2012-2022 period.
- Total project cost for SARP II exceeds \$1 Billion
- SIPES TD is relevant to SARP II immediate needs, and also has longer term applicability (e.g.Soldier System 2020)

Background: SARP II

SARP II Capability Deficiencies

- Lethality: does not defeat increased personal protection
- Ammunition: Minimal multi-effects and few non-lethal capabilities
- Accuracy: Requires significant level of training for effect
- Inconsistent Visibility: Even with viewing aids, visibility by day/night is different.
- Signature Management: Noise/flash are distinctive.
- Integration/Networking: No direct link to the Integrated Soldier System
- Adaptive Dispersed Operations (ADO): Difficulty in integrating current small arms into the net-enabled and dispersed concept of ADO
- **Ergonomics:** Poor weight, compactness and operating commonality
- Ancillaries: Ancillaries available but not integrated.

SIPES Objective and Key Deliverables

Objective

To demonstrate the viability, utility and usability of integrated novel and high pay-off small arms related lethal and non-lethal technologies for future, lightweight, small calibre weapon systems which address current capability deficiencies

Key Deliverables

- Scientifically rigorous requirements analysis for SARP II
- Optimized soldier lethality options
- Improved weapon systems evaluation capabilities
 - A future small arms R&D program plan

 Make the Army of Tomorrow (AoT) Soldier a true network-enabled precise weapon system platform with the ability for sensor to shooter linkage and the capability for applying the right effect at the right place and the right time and thus supporting the AoT force employment concept

Program Relationships

FY 08/09 09/10 10/11 11/12 12/13 13/14 14/15 15/16 16/17 17/18 18/19 19/20

SIPES Concept

Small arms functional prototypes based on component technologies that are optimally integrated to maximize weapon system effectiveness. A systems approach will be used to select component technologies based on **Analytical Hierarchy Procedure** and **Human Systems Integration** principles. **Operational Analysis** will be used to predict and asses weapon systems options.

0

Demonstration Level

SIPES Methodology

Validate Understanding of the Operating Environment, **Desired Effects and Capability Gaps**

Identify System Concepts for Different Fleets and Supporting Component Technologies

PRM Decision Point

System Concept(s): Refinement and Simulation **Component Technologies:** Simulation and Modelling

PRM Decision Point

Component Technologies:

N

3

4

Experimental Evaluation PRM Decision Point

Integrated component technologies: Static experimental test beds

PRM Decision Point

Functional Prototypes: Dynamic demonstration

Demonstration Level 4

Component Functional Prototypes

System Functional Prototypes

Human Factors Type Controlled User Field Trials on Instrumented Ranges

System Functional Prototypes:

Sample platforms for technology integration and evaluation

Developer	Designation	Description
FN Herstal (Belgium)	SCAR	Assault Rifle for the U.S. Special Operations Command
Beretta (Italy)	ARX-160	Assault Rifle for Soldato Futuro program
HK (Germany)	MP-7	4.6 mm caliber PDW
FN Herstal (Belgium)	P90	5.7 mm caliber PDW

SCAR

MP-7

ARX-160

P90

Technology Building Blocks

- DRDC Related S&T Projects:
 - Technology Demonstration Projects: SIREQ Information, ASAP – Power, SIHS – Helmet, JFS – Networking, Righttrack – Green Munitions
 - Applied Research Projects: Improved penetration, I2/IR
 Weapons Sights, Wound ballistics, Non-lethal weapons
 - Small Arms Scoping Studies 2005 (Jane's)
- **NATO RTO** group on Future Soldier Small Arms (interfaces, power and human factors)
- Extensive DRDC core competencies and facilities
- Industrial expertise from Canadian companies and those in Allied countries
- International cooperation and collaboration

DRDC Core Competencies & Facilities

Valcartier

- Wound ballistics & lethality assessment
- Aerodynamics/CFD
- Aeroballistic range
- Internal ballistics
- Energetic materials
- Green munitions
- Integration of Electro-Optics/Sensors
- Design/prototyping

Toronto

- Human Factors Design and Systems Integration
- Information Displays
- Man Machine Interface
- Interface Design
- 3D Anthropometry
- Small arms trainer

Atlantic

- Novel materials
- Material testing

Operational Research (CORA)

- Constructive simulation
- OR studies
- Gap analysis

Munitions Evaluation and Test Center (METC)

Weapon & munitions testing

Sample Technology Area Maturity Levels

Key Technology Areas			Potential Goal
	High cyclic rate	6	7
	Soft sensor mount		7
Weapons and Components	Ceramic barrels		7
·	Injected Metal Matrix stock	4	6
	New caliber and modular barrels	6	7
	Caseless Telescoped	3	4
	Cased Telescoped	4	5
Ammunition	High energy Nano Powder	3	4
Ammunition	Green ammunition	5	6
	Segmented core bullet	2	4
	Tunable (non lethal to lethal concepts)	3	4

TRL 1	TRL 2	TRL 3	TRL 4	TRL 5	TRL 6	TRL 7	TRL 8	TRL 9
Basic	Applied	Applied	Tech	Tech	Tech	Tech	System	System
research	research	research	dev.	dev.	demo.	demo.	dev.	fielding

Sample Technology Area Maturity Levels

Key Technology Areas			Potential Goal
	Non-conventional aiming	6	7
	Modular FCS	6	7
Sensors and	Fused SWIR / LWIR sight	5	6
Fire Control System (FCS)	Sight with Automatic Target Recognition	4	6
	Automatic tracking and firing (firing on the move)	3	5
	Energy harvesting (thermo-electric systems)	3	4
Networks	Wireless real-time link to soldier system	5	7
and	Plug and play Ethernet based architecture	3	5
Interfaces	Biometric and RFID tagging	6	7
	Power / data rail	4	7

TRL 1	TRL 2	TRL 3	TRL 4	TRL 5	TRL 6	TRL 7	TRL 8	TRL 9
Basic	Applied	Applied	Tech	Tech	Tech	Tech	System	System
research	research	research	dev.	dev.	demo.	demo.	dev.	fielding

Project Status

- Project Definition Phase formally approved in March 2008
- Project Definition Phase to run from April 2008 to February 2009
- Objectives for the Definition Phase
 - Clarify Stakeholder's Needs and directives
 - Perform high-level technology review
 - Clarify project scope
 - Obtain approval for project implementation
- Integrated technology teams have been formed
- High-Level Technology review process to be carried out by teams including personnel from government and industry
- Contractors to assist in High-Level Technology review are being identified with contracting to begin in June

Questions ??

DEFENCE

DÉFENSE

Ե