

Australian Defence Science & Technology - making the difference

Dr Nanda Nandagopal

Deputy Chief Defence Scientist (Policy & Programs)

Pacific Operational Science and Technology Conference
Hawaii
July 2008

Discussion Topics

What's new in Australia?

Defence Science making the difference

- Flagship Programs
- Capability Technology Demonstrator Program

New Govt - New initiatives

- White Paper Review
- Force Structure Review
- Companion Reviews
- Budget measures

White Paper Review 2008

 Australian Minister for Defence, the Hon Joel Fitzgibbon MP, announced a new Defence White Paper.

 The White Paper will be underpinned by a series of Companion Reviews. These reviews will be a key input to developing Defence business and budget priorities out to 2030.

Companion Reviews

- Defence Capability Plan Review
- Preparedness, Personnel and Operating Costs
 Review
- Logistics Review
- Estate Review
- Workforce Review

- Industry Capacity Review
- Workforce Review
- Industry Capacity Review
- Information and CommunicationsTechnology Review
- Science and Technology Review

Defence Budget Measures

 3% annual growth until 2018 (2 extra years)

• In 2008-09, ~\$22.6B

\$1.036 billion for ADF operations

Defence Budget Measures

- Defence needs to find savings of \$10B over next decade
- \$1B per year needs to be found to pay for Defence Capability Plan and Operations
- 5% cuts to the operational budget!
- Overseas travel cuts
- Reduction of Civilian staffing numbers

Science Making the difference

- "Shapes Vector" Network security
- Nulka Anti-ship Missile Defence Off Board decoy
- Aircraft repairs/ fatigue testing
- High strength steel
- Barra sonobuoy
- Laser Airborne Depth Sounder
- Jindalee Operational Radar Network Over the Horizon Radar

Flagship Technology Initiatives

- Automation of the Battlespace
- Fibre Laser Sensor Technology
- Smart Materials and Structures
- Hypersonic flights

Capability &

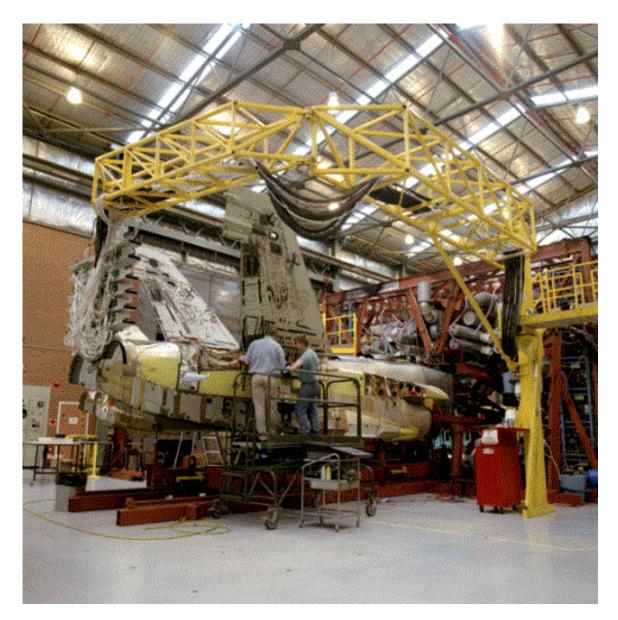
Technology Demonstrators

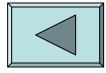
- Allows Australian Defence Industry to demonstrate how advanced technology can enhance Defence capability
- \$210 M invested since 1998
- Average CTD \$2m; 3 years

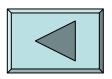
Recent Capability & Technology Demonstrators

- Ka Band Satellite On-The-Move Communications System
- Field Portable Supersonic Particle Deposition unit
- Special Sonar for Submarines
- Elongate Solar Cells for Energy Generation
- Adaptive Tuned Mass Damper for Submarine Engines
- Miniaturised GPS Anti-Jam Module

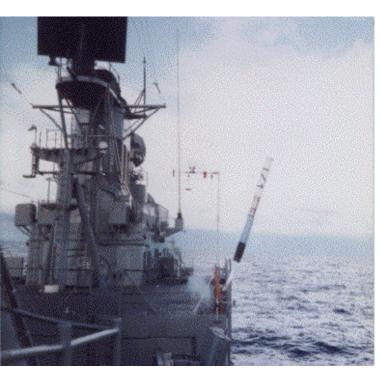
- Low Band Direction Finding Sub-System
- Tactical Electronic Warfare Open Architecture RF Subsystem
- Rifle Fired High-Velocity Grenade Launcher
- Low Cost On-Store Telemetry
- Battlefield Integrated Tactical Exploitation of Sensors
- Take-Off and Landing Aid for Helicopter Maritime Operations

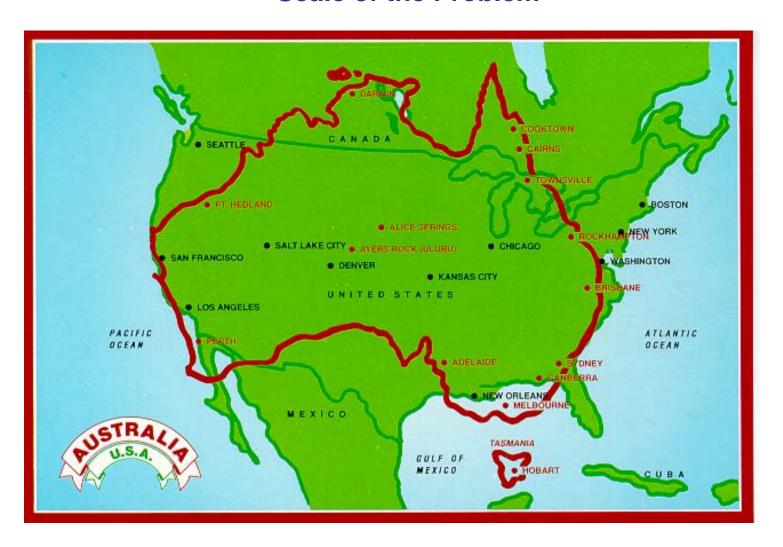

DSTO at a Glance



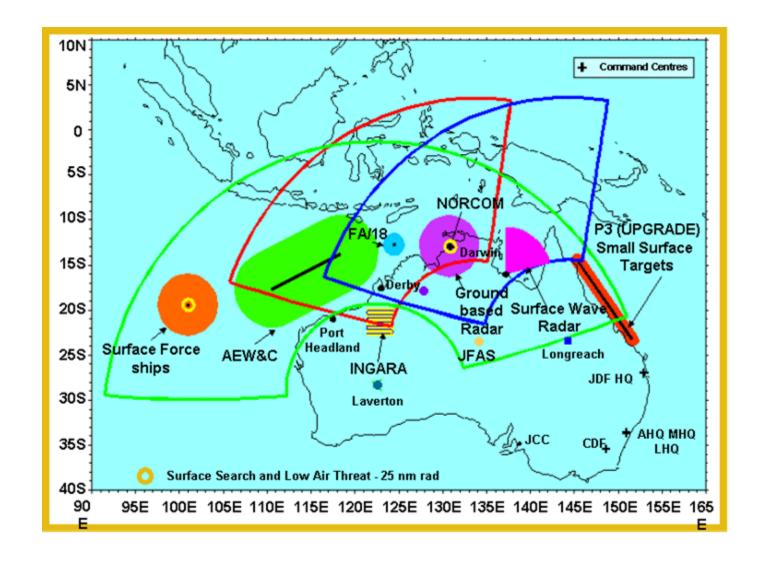


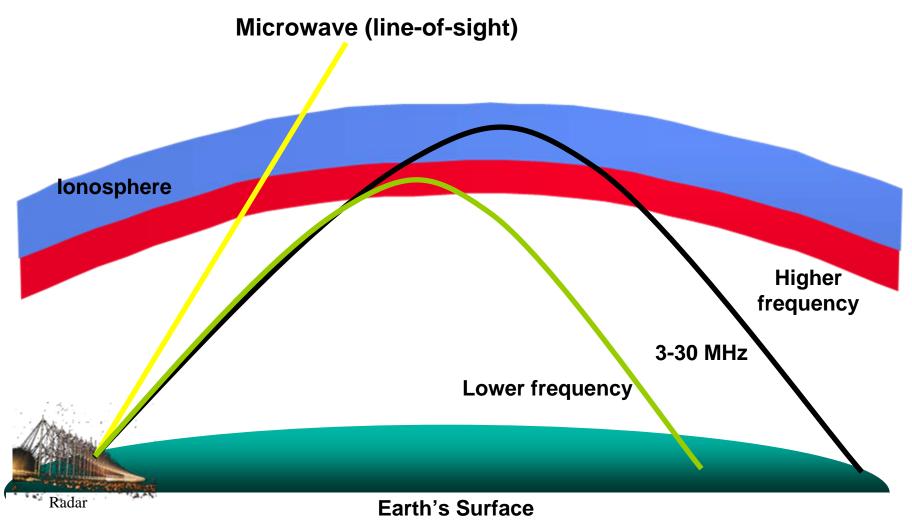
F/A-18 Fatigue Test





- Hovering rocket to seduce anti-ship missiles
- DSTO invention
- Australia US joint development
- Deployment to Australia, US, Canada


Scale of the Problem


Sphere of Surveillance

Over-the-Horizon Radar

Range 1000km - 3000km

OTHR Current Capability

... the ADF's wide area surveillance system will provide the potential for continuous real-time coverage of our northern air and sea approaches ...

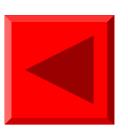
Defence 2000 White Paper

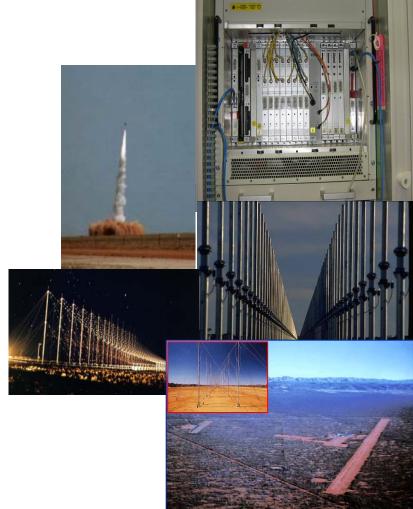
- Wide area surveillance
- Spot surveillance

OTHR Future Capability

Aims

- Maritime domain awareness
- Small aircraft targets
- Missile defence
 - Early launch detection
- Track Accuracy




JORN Phase 5 Enhancement Program

DSTO hardware and signal processing innovations provide performance enhancements, together with cost and timeline reductions

JP2025 Phase 5: 2006-12

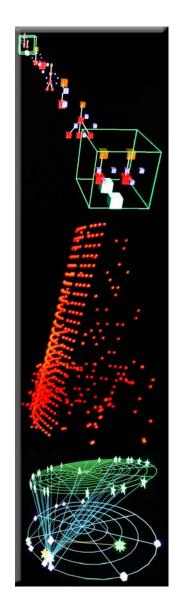
- Improved Track Accuracy
- Improved Coverage
 - 8 fold increase
- Enhanced Detection
- Electronic Protection
- Radar Management
- Reduced cost of operation/training

Australian Government Department of Defence What is Shapes Vector?

 A fully-integrated system for monitoring and surveillance of ultra-large computer networks, critical infrastructure, physical security

- Modular Architecture
 - Allows easy integration and wrappeing of third party systems and components
 - Novel method for semantic integration of in house developed and third party components

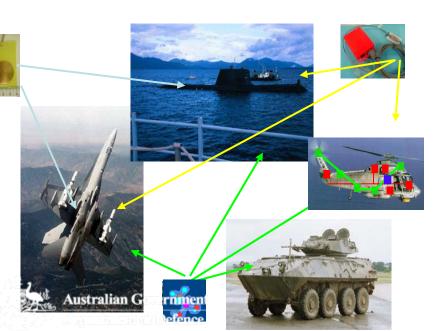
SV as a Unified Security System

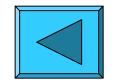

- SV system offers ability to:
 - automatically deduce many forms of knowledge about a network, and
 - comprehensively integrate that knowledge into a single consistent environment
- SV Processes knowledge as semantically-meaningful units
- Can correlate with other monitoring systems, e.g., Physical Base Security/Acces, visual surveillance

Beyond COTS Capabilities

- "State of the Art" COTS Security tools can detect types of threat at network perimeter (usually those which are context-free)
- Some have limited detection of site-defined policy breaches
- Beyond this, all other phases of the investigative process remain intensively manual
- Consequently, still need lots of people to 'police' even a moderate-sized network

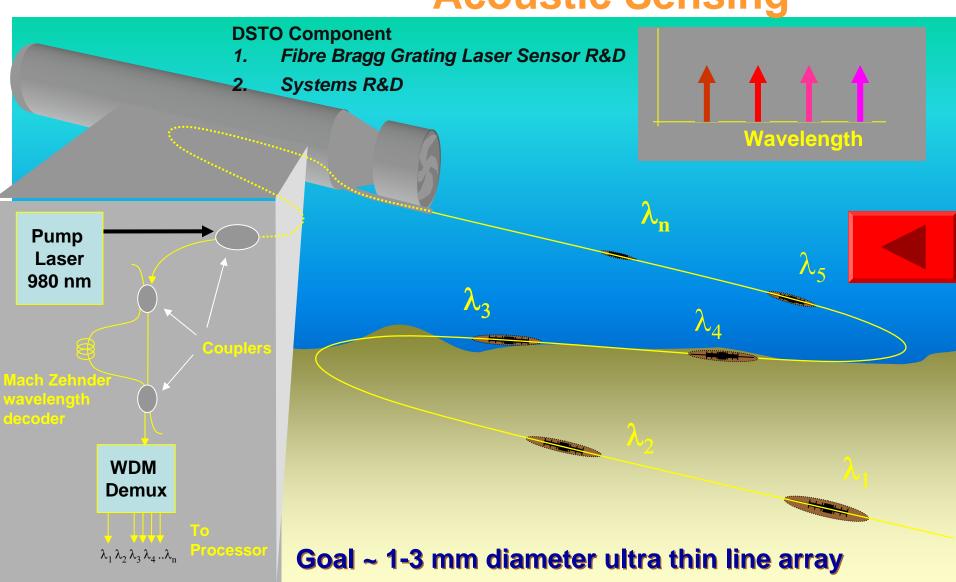
- SV can provide more comprehensive protocol analysis, leading to greater coverage of network perimeter threat
- SV has a detailed language for defining and monitoring local site policy which can include physical infrastructure as well as cyberspace
- SV is easily customisable

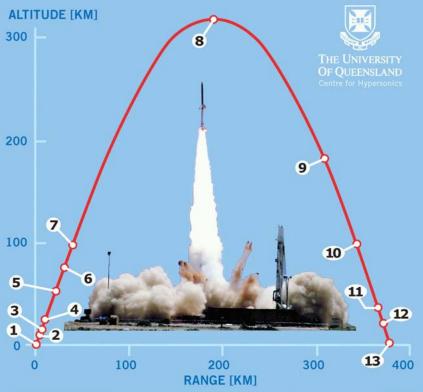



Smart Materials & Structures

Nano-materials can display novel properties not available with current (macro-) materials -

SMS focuses on exploring opportunities


Through SMS - DSTO is:


- Developing smart platform sensing/management systems for reduced cost of ownership and increased platform safety
- Developing smart materials using transformational nano-scale concepts to enhance platform capability
- Focusing on emerging technology in smart sensors, systems using micro / nanotechnology, MEMs, OE, automation

Fibre Bragg Gratings in Acoustic Sensing

Nominal HyShot Mission Profile

		Time	Altitude	Speed - Mac
1	Terrier Ignition	- 0 SEC,	OKM,	MO
2	Terrier Burnout	- 6.03 SEC,	3.44 KM,	M3.6
3	Stage Separation	- 6.04 SEC,	3.5 KM,	M3.6
4	Orion Ignition	- 16 SEC,	12.8 KM,	M3.3
5	Orion Burnout	- 42.4 SEC,	56.4 KM,	M 7.1
6	Nosecone Eject	- 63 SEC,	100 KM,	_
7	Start Attitude Control Manoeuvre			
		- 73 SEC,	115 KM,	-
8	Apogee	- 281 SEC,	315 KM,	-
9	Re-enter Atmosphere	- 510 SEC,	80 KM,	M 8.0
10	‡ Start Experiment	- 529 SEC,	35 KM,	M 7.6
11	‡ Stop experiment	- 535 SEC,	23 KM,	M 7.6
12	Impact	- 565 SEC.	OKM.	M 0.67

Automation of Battlespace Initiative

Trial outcomes:

- UUV and UAV collected and transmitted ISR/REA info to command vessel
- UUV undertook mine counter measure op, covertly detected and transmitted mine information
- UAV provided real-time geo-reference imagery of "enemy" vessel

