
© 2008 Carnegie Mellon University

Dr. Kenneth E. Nidiffer
Director of Strategic Plans for
Government Programs
nidiffer@sei.cmu.edu
703.908.1117

Process Improvement and CMMI®
- Developing Complex Systems-

Using CCMI® to Achieve Effective
Systems and Software Engineering
Integration

8th Annual CMMI Technology Conference and User Group
November 17-20, 2008
Hyatt Regency Tech Center
Denver, Colorado
Theme: Investigation, Measures, and Lessons Leaned About the
Relationship Between CMMI ® Process Capability and Project or
Program Performance.

mailto:nidiffer@sei.cmu.edu

2

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

The Software Engineering Institute - Improving the Practice
of Engineering: Create, Apply and Amplify

Federally Funded Research and Development Center

Created in 1984

Sponsored by the U.S. Department of Defense

Locations in Pittsburgh, PA; Washington, DC;
Frankfurt, Germany

Operated by Carnegie Mellon University

3

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Overview

• Integration Trends
– Development
– Mission
– Technology
– Engineering
– Risk

• CMMI Benefits
• Ten Future Trends
• Wrap-up

Development Complexity

4

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Need for Space, Air, Ground, Water, Underwater
Software-Intensive Systems to be Integrated

• Several million SLOC programs; “Hybrid”
systems combining legacy re-use, COTS,
new development

• Multi-contractor teams using different
processes; dispersed engineering,
development & operational locations

• New technologies create
opportunities/challenges;
products change/evolve, corporations mutate

• Business/operational needs change - often
faster than full system capability can be
implemented

• Skillset Shortfalls; Cost and schedule
constraints

• Demands for increased integration,
interoperability, system of system capabilities

• Enterprise perspectives/requirements;
sustainment concerns

Development Complexity of
Software-Intensive Systems

is Increasing

Development Complexity of
Software-Intensive Systems

is Increasing

5

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Less a Matter of HittingLess a Matter of Hitting

a Windowa Window

And More a Matter ofAnd More a Matter of

The Right Window The Right Window -- Right Right
NowNow

Need for Mission Integration

6

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Software Engineering Trends That Impact Systems
Engineering

Traditional

• Standalone systems

• Mostly source code

• Requirements-driven

• Control over evolution

• Focus on software

• Stable requirements

• Premium on cost

• Staffing workable

Future

• Everything connected-maybe

• Mostly COTS components

• Requirements are emergent

• No control over COTS evolution

• Focus on systems and software

• Rapid change

• Premium on value, speed, quality

• Scarcity of critical talent

Emerging Dynamics of Bringing Systems and Software Engineering in
Continued Partnership

Emerging Dynamics of Bringing Systems and Software Engineering in
Continued Partnership

7

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

The Acceleration of Innovation in the 21st Century:
- Facilitating Our Ability to Integrate

The Amount of New Technological
Innovation is Doubling Every Two Years

- Requires More Upfront SE/SW
Engineering to Leverage Trends

8

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Facilitating Integration: Augustine’s Law - Growth of
Software is an Order of Magnitude Every 10 Years

F-4A
1000
LOC

1960’s

F-16C
300K
LOC

1980’s

F-22
1.7M
LOC

1990’s

F-35
>6M
LOC

2000+

F-15A
50,000
LOC

1970’s

In The Beginning

http://home.tiscali.nl/~lbroers/picswar1/f22_1.jpg
http://home.tiscali.nl/~lbroers/picswar1/f4.jpg
http://home.tiscali.nl/~lbroers/picswar1/f4.jpg
http://home.tiscali.nl/~lbroers/picswar1/f4.jpg
http://home.tiscali.nl/~lbroers/picswar1/f4.jpg

9

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Facilitating Integration: Given Augustine’s Law
Holds

2080?

Need for increased functionality will be a forcing function to bring the
fields of software and systems engineering closer together

Need for increased functionality will be a forcing function to bring the
fields of software and systems engineering closer together

F-50 - 4.7B Lines of Code

10

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Facilitating Integration: Moore's Law - The Number
of Transistors That Can be Placed on an Integrated
Circuit is Doubling Approximately Every Two Years

11

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Facilitating Integration: Increased Technological
Rate of Adoption

10010090908080707060605050404030302020101011 110110

ElectricityElectricity
(1873)(1873) TelephoneTelephone

(1876)(1876)

AutomobileAutomobile
(1886)(1886)

TelevisionTelevision
(1926)(1926) RadioRadio

(1905)(1905)
VCRVCR

(1952)(1952)

MicrowaveMicrowave
(1953)(1953)

Cell PhoneCell Phone
(1983) (1983)

PCPC
(1975) (1975)

Source: Rich Kaplan, Microsoft

InternetInternet
(1975)(1975)

9090

8080

7070

6060

5050

4040

3030

2020

1010

00

100100

Percentage of O
w

nership
Percentage of O

w
nership

No. of Years Since InventionNo. of Years Since Invention

Source: Rich Kaplan, Microsoft

Automobile = 56
years

Telephone = 36 years

Television = 26 years

Cell phone = 14 years

http://images.google.com/imgres?imgurl=www.crystalcitysportspub.com/TELEVISION.jpg&imgrefurl=http://www.crystalcitysportspub.com/&h=588&w=484&prev=/images%3Fq%3DTelevision%26start%3D20%26num%3D20%26sa%3DN
http://images.google.com/imgres?imgurl=www.catholicweb.com/imagegallery/General_clipart_lrg/Cell%2520Phone.gif&imgrefurl=http://home.catholicweb.com/maryqueenschool/index.cfm/NewsItem%3FID%3D9357%26From%3DHome&h=277&w=240&prev=/images%3Fq%3Dcell%2Bphone%26start%3D20%26num%3D20%26sa%3DN

12

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Management Integration: Life of a Program
Manager in a System of Systems Operation…

13

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Relationship Between Integration Complexity and
Acquisition Success Improving and More
Improvements are on the Way But …..
Software is Growing in Complexity

• 80% of some weapon system
functionality is dependent upon software

• Consequences of software failure can be
catastrophic

Software Acquisition is Difficult
• 46% are over-budget (by
an average of 47%) or late
(by an average of 72%)

• “Successful projects” have
68% of specified features

Software is Pervasive
• IT Systems, C4ISR, Weapons, etc

Standish Group CHAOS Report

16%
27%
26%
28%
34%

29%
35%

31%
40%

28%
23%
15%

19%

53%
33%

46%
49%
51%
53%

46%
18%

0% 20% 40% 60% 80% 100%

1994
1996
1998
2000
2002
2004
2006

On-time On budget Cancelled Late and Over budg

0

20

40

60

80

100

1960 1964 1970 1975 1982 1990 2000

Pe
rc

en
t F

un
ct

io
ns

 P
er

fo
rm

ed

in
 S

of
tw

ar
e B-2

F-22

F-4
F-16

F-15F-111

A-7

On-going Changes to the Acquisition
Process Targeted at Correcting this Issue

14

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Integration Challenges: Some Drivers That Increase
the Risk of Engineering Software-Intensive Systems

Enterprise

Strategic
Teaming

“Layers &
Stacks”

Plug & PlayProprietary
Architectures and Standards

“Boxes” Integration Challenge

Dominant
Prime Program Execution

Platform Customer Emphasis

Objectives/
CapabilitiesRequirements

Acquisition Model

Need Exists to Address Both Sides, and Do So with Compressed Delivery
Schedules via Improvements in Systems/Software Engineering

Need Exists to Address Both Sides, and Do So with Compressed Delivery
Schedules via Improvements in Systems/Software Engineering

15

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

CMMI ® Product Integration (PI)

Purpose

Assemble the product from the product components, ensure that the
product, as integrated, functions properly, and deliver the product.

Source: SEI CMMI® Training Material

16

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Two Representations – Focus at Higher Maturity
May Be Different Depending on Representation

Source: SEI CMMI® Training Material

(More PA Focused) (More
Business
Focused)

17

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Staged Representation: PAs by Maturity Level

Quality

Productivity

Source: SEI CMMI® Training Material

18

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Run Chart - Definitions

Upper Control Limit (ULC)

Lower Control Limit (CLC)

Time

Business Objective - Voice of Business

Voice of
Customer

Voice of Process, Common Cause
of Variation, Current Voice of

Business

Special
Cause of
Variation

Data

19

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Focus on Business Objectives

20

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

CMMI® Provides a Framework for Software and Systems
Engineering to Become More Integrated

System
Design

System
Analysis

Software (SW)
Requirements

Analysis

Architectural
SW Design

SW Subsystem
Testing

Code and
Unit Test

Detailed SW
Design

System
Testing

System
Integrated

Testing

SW System
Testing

SW Integration
Testing

SW Engineering SW Engineering

SW Systems
Engineering

SW Systems Engr.

Systems Engr.

SW Systems Engr.

Systems Engr.
Systems

Engineering (SE)

21

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

System
Level

Subsystem
Level

Component
Level

Requirements
Development

Requirements

Architecture
Definition

Analysis &
Initial Design

Architectures

Designs

Requirements
Development

Subsystem
Requirements

Architecture
Definition

Analysis &
Initial Design

Subsystem
Architectures

Subsystem
Designs

Requirements
Development

Subsystem
Requirements

Architecture
Definition

Analysis &
Initial Design

Subsystem
Architectures

Subsystem
Designs

Requirements
Development

Subsystem
Requirements

Architecture
Definition

Analysis &
Initial Design

Subsystem
Architectures

Subsystem
Designs

Requirements
Development

Component
Requirements

Architecture
Definition

Analysis &
Initial Design

Component
Architectures

Component
Designs

Requirements
Development

Component
Requirements

Architecture
Definition

Analysis &
Initial Design

Component
Architectures

Component
Designs

Requirements
Development

Component
Requirements

Architecture
Definition

Analysis &
Initial Design

Component
Architectures

Component
Designs

Requirements
Development

Component
Requirements

Architecture
Definition

Analysis &
Initial Design

Component
Architectures

Component
Designs

System
Level

Subsystem
Level

Component
Level

Requirements
Development

Requirements

Architecture
Definition

Analysis &
Initial Design

Architectures

Designs

Requirements
Development

Requirements

Architecture
Definition

Analysis &
Initial Design

Architectures

Designs

Requirements
Development

Subsystem
Requirements

Architecture
Definition

Analysis &
Initial Design

Subsystem
Architectures

Subsystem
Designs

Requirements
Development

Subsystem
Requirements

Architecture
Definition

Analysis &
Initial Design

Subsystem
Architectures

Subsystem
Designs

Requirements
Development

Subsystem
Requirements

Architecture
Definition

Analysis &
Initial Design

Subsystem
Architectures

Subsystem
Designs

Requirements
Development

Subsystem
Requirements

Architecture
Definition

Analysis &
Initial Design

Subsystem
Architectures

Subsystem
Designs

Requirements
Development

Subsystem
Requirements

Architecture
Definition

Analysis &
Initial Design

Subsystem
Architectures

Subsystem
Designs

Requirements
Development

Subsystem
Requirements

Architecture
Definition

Analysis &
Initial Design

Subsystem
Architectures

Subsystem
Designs

Requirements
Development

Component
Requirements

Architecture
Definition

Analysis &
Initial Design

Component
Architectures

Component
Designs

Requirements
Development

Component
Requirements

Architecture
Definition

Analysis &
Initial Design

Component
Architectures

Component
Designs

Requirements
Development

Component
Requirements

Architecture
Definition

Analysis &
Initial Design

Component
Architectures

Component
Designs

Requirements
Development

Component
Requirements

Architecture
Definition

Analysis &
Initial Design

Component
Architectures

Component
Designs

Requirements
Development

Component
Requirements

Architecture
Definition

Analysis &
Initial Design

Component
Architectures

Component
Designs

Requirements
Development

Component
Requirements

Architecture
Definition

Analysis &
Initial Design

Component
Architectures

Component
Designs

Requirements
Development

Component
Requirements

Architecture
Definition

Analysis &
Initial Design

Component
Architectures

Component
Designs

Requirements
Development

Component
Requirements

Architecture
Definition

Analysis &
Initial Design

Component
Architectures

Component
Designs

Prior to Product Integration – Left
Side of Vee Chart

22

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Product Integration Goals

SG 1: Prepare for Product Integration

Preparation for product integration is conducted.

SG 2: Ensure Interface Compatibility

The product component interfaces, both internal and external, are
compatible.

SG 3: Assemble Product Components and Deliver the Product

Verified product components are assembled and the integrated, verified,
and validated product is delivered.

Source: SEI CMMI® Training Material

23

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Product Integration Goals

Prepare for
Product Integration

Ensure
Interface

Compatibility

Assemblies
Sub-assemblies

Assemble Product
Components

and Deliver the
Product

TS

DAR

Source: SEI CMMI® Training Material

24

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Integration Management By Business
Objectives

User
Requirements

Policy &
Direction

Systems
Integration

Management

Existing
Configuration

Change
Management

Configuration

Control

Authority

Incremental
Implementation

Policy &Standards
Compliance

DoD

Service

Command

TECHNICAL

Mission

Function

Products

System

Traceability

OPERATIONAL

System A System B System N

Enterprise
Managers

Enterprise Perspective

Functional

Technical

Fiscal
Risk

Standards

CM
Requirements

SYSTEM of SYSTEMS

ENTERPRISE
. . .

SAIC PROPRIETARY

16

25

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Engineering Integration – Achievement of Flexible
Boundary-Crossing Acquisition Structure

2005 study confirmed*:
• In advanced knowledge-based organizations, management’s desire for
the flow of knowledge is greater than the desire to control boundaries
• Unlike the matrix organization, there is less impact on the dynamics of
formal power and control
• Important to measure the system in terms of user performance

Ref: Jim Smith, (703) 908-8221,jds@sei.cmu.edu

Programmatic

Constructive

Operational System
Operation

System
Construction

Program
Management

System
Operation

System
Construction

Program
Management

“acquisition”

“Acquisition” Advanced Knowledge-Based Organizations (Big A)

From “Science and Technology to Support FORCEnet,” Raytheon TD-06-008. Used
by permission.

* Using Communities of Practice to Drive Organizational Performance and Innovation, 2005, APQ study

mailto:jds@sei.cmu.edu

26

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Northrop Grumman Unveils New Modeling and
Simulation Research Center

New Aviation Ship
Integration Center, a
state-of-the-art research
facility established in
partnership with the U.S.
Navy to conduct modeling,
simulation, research,
development and in-depth
analysis for CVN 21-class
aircraft carriers and other
aviation-capable ships.

OSD (AT&L) Policy – Prototyping
and Competition, 2007

27

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Higher-Maturity Approaches to Process Improvement
Are Important and Synergistic Trends

Data-Driven (e.g., Six Sigma, Lean)

Determine what your processes can do
(Voice of Process)

• Statistical Process Control

Clarify what your customer wants (Voice
of Customer)

• Critical to Quality (CTQs)

Identify and prioritize improvement
opportunities

• Causal analysis of data

Determine where your
customers/competitors are going (Voice
of Business)

• Design for Six Sigma

Model-Driven (e.g., CMM, CMMI)

Determine the industry best practice
• Benchmarking, models

Compare your current practices to the
model

• Appraisal, education

Identify and prioritize improvement
opportunities

• Implementation
• Institutionalization

Look for ways to optimize the processes

Quantitatively Managed

Optimizing

CMMI and Six Sigma,
Siviy, et al, 2007, Addison Wesley

http://images.google.com/imgres?imgurl=http://www.processimprovement.com/gifs/levels.gif&imgrefurl=http://www.processimprovement.com/resources/cmms.htm&h=144&w=179&sz=5&tbnid=LncThuVrrAQJ:&tbnh=76&tbnw=95&hl=en&start=9&prev=/images%3Fq%3DCMM%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DGGLD,GGLD:2005-08,GGLD:en

28

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Systems and Software Engineering: Ten Trends

• Greater integration demands on systems and software engineers will
stimulate growth in the field – nationally and internationally

• Industry/Gov’t will increasingly focus on attracting, training and retaining
systems and software engineering talent – short and long run – with
emphasis on providing a more integrated work environment (7 by 24, any
shore)

• Increased reliance on systems and software engineering processes and
technologies to effectively manage integration issues

• The laws of Augustine’s and Moore will continue to hold and will continue
to be a forcing function to facilitate the need for integration

29

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Systems and Software Engineering: Ten Trends
• Improvements risk-reduction collaboration mechanisms will be significant

enablers for increases in systems and software engineering communication
and “decision velocity”

• Systems and software engineers will continually find way to innovative to
reduce integration issues

• Increased importance of modeling and simulation

• Increased business focus for system and software engineering integration

• Shift of systems and software engineering focus from the platform to integrated
networks and ground systems

• Use of CMMI-Dev will continue to be important!

© 2008 Carnegie Mellon University

Questions?

31

Developing Complex Systems – Using CMMI to Achieve
Effective Systems and Software Engineering Integration
Dr. Kenneth E. Nidiffer
© 2008 Carnegie Mellon University

Recommended Readings

Buckman, Robert H. Building a Knowledge-Driven Organization. McGraw-Hill, New York, NY, 2004.

Chrissis, M. , Konrad, M., and Shrum, S, CMMI® for Development, Version 1.2, Guidelines for Process Integration
and Product Improvement, Fifth Printing, 2007, Addison Wesley

GAO Report: 08-467SP, Defense Acquisitions – Assessment of Selected Weapon Systems, March 2008
Chesbrough, Henry William. Open Innovation: The New Imperative for Creating and Profiting from Technology.

Harvard Business School Publishing Corporation, Boston, MA 2003.

Drucker, Peter. Managing in the Next Society. Truman Talley Books, New York, NY, 2003.

Friedman, Thomas L. “The World Is Flat”, Farrar, Straus and Giroux, 2005
Gates, William H. III “Business @ The Speed of Thought – Using a Digital Nervous System”, Time Warner Books,

1999
Kurstedt, Harold and Pamela, Systems and Software Engineering Interfaces, Dealing with the Bumpy Roads,

Nidiffer, Kenneth E. and Doland, Diana “Evolving Distributed Project Management”, special issue IEEE Software,
Sept/Oct 2005

Northrop, Linda. Ultra-Large-Scale Systems – The Software Challenge of the Future, Software Engineering
Institute, June 2006

Rouse, William B. et al, Understanding R&D Value Creation with Organizational Simulation, Tennenbaum
Institute, H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology,
Atlanta, GA 30332-0205, Oct 2006

Wladawsky-Berger, Irving. “The Future of IT in an On-Demand World.” IBM Server Group, Keynote address at
OSBC 2005. Archived at http://www.itconversations.com/shows/detail495.html

http://www.itconversations.com/shows/detail495.html

	Process Improvement and CMMI®�	- Developing Complex Systems- Using CCMI® to Achieve Effective Systems and Software Engineering
	The Software Engineering Institute - Improving the Practice of Engineering: Create, Apply and Amplify
	Overview
	Need for Space, Air, Ground, Water, Underwater Software-Intensive Systems to be Integrated
	Need for Mission Integration
	Software Engineering Trends That Impact Systems Engineering
	Facilitating Integration: Augustine’s Law - Growth of Software is an Order of Magnitude Every 10 Years
	Facilitating Integration: Given Augustine’s Law Holds�
	Facilitating Integration: Moore's Law - The Number of Transistors That Can be Placed on an Integrated Circuit is Doubling Appr
	Facilitating Integration: Increased Technological Rate of Adoption
	Management Integration: Life of a Program Manager in a System of Systems Operation…
	Relationship Between Integration Complexity and Acquisition Success Improving and More Improvements are on the Way But …..
	Integration Challenges: Some Drivers That Increase the Risk of Engineering Software-Intensive Systems
	CMMI ® Product Integration (PI)
	Two Representations – Focus at Higher Maturity May Be Different Depending on Representation
	Staged Representation: PAs by Maturity Level
	Run Chart - Definitions
	Focus on Business Objectives
	CMMI® Provides a Framework for Software and Systems Engineering to Become More Integrated
	Product Integration Goals
	Product Integration Goals
	Integration Management By Business�Objectives
	Engineering Integration – Achievement of Flexible�Boundary-Crossing Acquisition Structure
	Higher-Maturity Approaches to Process Improvement�Are Important and Synergistic Trends
	Systems and Software Engineering: Ten Trends
	Systems and Software Engineering: Ten Trends
	Recommended Readings

