Presentation Title

= Software Engineering Institute

Closing the gap

between PM and SE

Bob Ferguson

Software Engineering Institute

Carnegie Mellon University

October 2008

CarnegieMellon

Hllon University

10/7/2008

Software Engineering Institute | Carnegie Mellon

© 2006 Carnegie Mellon University

1

CSPIN Oct 2008
Bob Ferguson

Today’s Topic Description

A conversation

Resolving complexity requires learning
Multiple value systems affect decisions
Innovation causes schedule unpredictability

10/1/2008

Software Engineering Institute | Carnegie Mellon

© 2006 Carnegie Mellon University

10/7/2008

CSPIN Oct 2008
Bob Ferguson

A Conversation

Manager: How big is this project?
Developer: | don’t know. This looks really hard.

Manager: Well we need to know how big it is so we can
estimate the work.

Developer: [I'll have to figure out how hard it is so | can tell
you how long it will take.

These two are talking about different things. @
The developer believes that his estimate of size, will

not recognize the unceriainty. He wants to know | U/ :
something about this compiexity to adjust duration.

Software Engineering Institute | CarnegieMellon © 2006 Carnegie Mellon University 3

10/7/2008

CSPIN Oct 2008
Bob Ferguson

Project Manager’s Concern

The PM is concerned with staffing and planning to meet
the project’s objectives.

The PM may not understand what the engineer means by
complexity.

The PM does not know what questions to ask, nor has he
thought sufficiently about engaging the SE in project
planning.

How do we creatie a new “conversation”?

Software Engineering Institute | Carnegie Mellon © 2006 Carnegie Mellon University 4

CSPIN Oct 2008
Bob Ferguson

Feasibility
Types of users
External interfaces
Constraints

ConOps

Specifications
Secondary functions
Storage needs
Optimal architecture
Developer skills

Code

Reliability
Achievable performance

Sources of Uncertainty in

Feasible performance bounds
Understanding of user need

Tester understanding of scenarios

Estimates
10
YN
H] N\
g =
ER B S oo
° At —=—High
> =
[
® g5
¥
01 1 '
& P& ¢ © @
§ éoq S 0& ng’& \fb‘\o
& © 5 R
R PR
Milestones
Source: Vic Basili, NASA Goddard SEL

The nature of the uncertainty changes as we progress through the project. This means we
have to be prepared to ask different questions depending on the deliverables under scrutiny
and the actual tasking of the current work.

10/7/2008

Software Engineering Institute

Carnegie Mellon

© 2006 Carnegie Mellon University

CSPIN Oct 2008
Bob Ferguson

Uncertainty, Learning and Complexity

We often say “that’s really complicated” when we mean
that we don’t know how to do a certain type of work within
that specific domain.

« McCabe’s complexity is a means to describe how much has to
be learned in order to provide satisfactory
(error-free) maintenance.

Complexity often cannot be eliminated but there can be
strategies (models) for resolving or reducing the impact of
the complexity.

10/7/2008

Software Engineering Institute | Carnegie Mellon © 2006 Carnegie Mellon University

CSPIN Oct 2008
Bob Ferguson

Questions to ask about “Learning”

What has to be learned to develop and deliver the product?
What can we see that provides evidence of this learning?
How can we best measure team performance?

Who can we influence if the right things are not happening?

Also, looking to the future --
« What should we record as “learning™?
+ How can we advertise success?

“Learning” should result in reduced uncertainty.
Perhaps that is measurable?

10/7/2008

Software Engineering Institute | CarnegieMellon © 2006 Carnegie Mellon University

CSPIN Oct 2008
Bob Ferguson

Complexity Types

Big

« Projectis going to require partitioning into multiple teams and
separable components

Invention and innovation

« Organization does not (yet) have the needed technical capability
Conflicting/Interacting goals

» E.g. power-weight tradeoff

Emergent behavior*
« External systems (including users) present changing stimuli

I don’t know if this is an exhaustive classification of types of complexity. These categories
seem to be useful to someone in a project management role. The effect of each type
described calls for different management response.

We do not have time to talk about “Emergent Behavior” this time. However, | can tell you
that discussion is about determining what happens when your system must respond to a
new stimulus. You do not want the system to do anything bad or to fail, but often you must
accept that new stimuli will arrive. How would you instrument your system to recognize that
you had received a new stimulus or that your system was exhibiting a new type of
response?

10/7/2008

Software Engineering Institute | Carnegie Mellon © 2006 Carnegie Mellon University

10/7/2008
CSPIN Oct 2008
Bob Ferguson

Big: Partition the work

Rationale:

System or component encompasses too much functional
responsibility for a single person or a single team to accomplish
in a reasonable period of time.

What problems does our chosen patrtition introduce?
- Coupling creates component “brittleness”
« Interface definition is hard to communicate
« There may be design responsibility questions

+ Sequencing the work is more difficult and the schedule is more
fragile

Brittle means that a change to a component may break other components.

Interfaces will require IPT structures. The IPT structure generally should be built along
product structure rather than organizational structure.

Design responsibility questions arise when two different teams have a debate about who
should do what work.

Sequencing (schedule) is more difficult because critical path moves back and forth between
teams.

Software Engineering Institute | Carnegie Mellon © 2006 Carnegie Mellon University 9

CSPIN Oct 2008
Bob Ferguson

Different Values?
The sub-bullet here might be “change effects”

Makes decision
process difficult*

Schedule & Resources

Investor,
Project
Manager

Customers,
Product Manager

%
Architecture, Process, ((‘-;) ,

Skills & Team Market Acceptance

These different value systems are often in conflict with one another. Problems occur when
one individual has to be responsible for more than one viewpoint — the resulting behavior is
either schizophrenic or ignoring one of the value systems.

Engineering process includes such things as design rules governing how we make design
decisions.

This diagram also reflects the problem of change management. The effects of each change
ripple to the other value systems. Somehow, the project must bring all three (or more) value
systems to the table. This can only be accomplished effectively if each value system is
independently represented.

Software Engineering Institute | Carnegie Mellon ||-1(Managing Software Projects with Metrics

OCtOng‘wﬂf ?’6@’8’81"6’ Mellon University

10

10/7/2008
CSPIN Oct 2008

Bob Ferguson

Measures of Big

Component functional responsibility (raw size)

« Calls + /O + Data-structure-manipulation
(Wayne Zage at www.serc.net)

Coupling
» (inflows * outflows)+(fan-in * fan-out)
#Capabilities needed (too many for the team?)
« #Design-skills
- #Organizational functions

—~+
-
-

It is impossible to create a complete list of size measures. The primary purpose of size is to
help with estimation and planning. The second use of size is to normalize defect information
and process.

Component functional responsibility affects team size, individual work assignments, IPT
size, etc.

Coupling is an indirect (second order) measure of big. We do know, however, that modules
with the highest coupling correlate to modules with lowest reliability. Too much coupling is
bad for both the developers and the testers. Coupling is a measure applied to a single
component.

#Capabilities (skills and processes) is another measure that suggests the need for an IPT
structure (team of teams). Mixtures of hardware and software, development and validation,
etc. all drive the need for the IPT.

Software Engineering Institute | CarnegieMellon © 2006 Carnegie Mellon University 11

10/7/2008
CSPIN Oct 2008

Bob Ferguson

Innovation means “Fix the Process”

Rationale:

- The organization does not yet have the capability (knowledge
and skills) to do the work or to utilize this new technology;
therefore the people and organization have something to learn.

What problems arise?
Late technology capability will drive incorrect assumptions.
Innovation is initiated by a single person or small team.
Innovators are often not good communicators.

The traditional model of technology as “Technology Readiness Levels” only looks at whether
the science exists. It does not address the organization’s ability to use the technology or the
customer’s readiness either.

This error in understanding has often generated mistaken assumptions about the nature of
technology problems and how they affect implementation. We suggest a measure of
“technology adoption” or transition that includes monitoring the creation of design rules,
testing procedures, user documentation, logistics, etc.

Software Engineering Institute | CarnegieMellon © 2006 Carnegie Mellon University 12

CSPIN Oct 2008
Bob Ferguson

Innovation: Two Steps for invention and transfer

Ways to acquire the basic knowledge
» Purchase
- Develop
+ Hire
Develop the skills for use — new process and product rules
+ Design (“Design Rules” by Baldwin and Clark)
+ Verification and validation
Manufacture
Distribution

Measures: how many processes, design rules, ...7

Design rules represent how the engineers are supposed to make decisions using the new
technology.

Verification and validation should not be new, but validation is often neglected. You simply
cannot deliver a successful product based solely on the requirements and specifications.

You can find some interesting reading about how organizations manage development of
new skills. It’s not really about training — it's about learning. Some of the reading will fall
under the heading of IPPD — Integrated Product and Process Development.

10/7/2008

Software Engineering Institute | Carnegie Mellon © 2006 Carnegie Mellon University

13

10/7/2008

CSPIN Oct 2008
Bob Ferguson

“Conflicting Goals” require experiments

Examples

Increasing power requires additional weight affects product price
and margin.

« More security affects usability and performance

Experimental methods
« Prototypes
+ Simulation
» Thought exercise
« Formal methods (e.g. rate monotonic analysis)

Executing an experiment is not particularly unpredictable even though the outcome is
unpredictable. Therefore the experiment needs to be designed to help with making a choice.

The number of experiments can be unpredictable but there have been some studies that
suggest using the Design Structure Matrix method to predict how many experiments might
be needed.

The biggest problem occurs when no one realizes that the conflicting goals scenario virtually
requires us to perform some number of experiments. The alternatives for finding the sweet
spot are all more complicated and more time consuming.

Software Engineering Institute | Carnegie Mellon © 2006 Carnegie Mellon University

14

CSPIN Oct 2008

Bob

Ferguson

Strategies for project managers and SE’s

Identifying the complexity factors
Project planning methods
Multiple dimensions for tracking

10/7/2008

Software Engineering Institute | Carnegie Mellon © 2006 Carnegie Mellon University

15

CSPIN Oct 2008
Bob Ferguson

Identifying Complexity and Uncertainty

Estimate Functional Responsibility.
+ FP, #requirements, use cases
Estimate innovation.
+ New technology, additional skills
Identify distinct value systems.
Internal and external sponsors,
Distinct users,
Internal functional leaders

Every estimate needs a range and usually a constraint for
an escalated decision.

We must estimate functional responsibility at the component level at some point during the
planning process because it drives the partitioning of product into team- and individual-sized
chunks. Component size is part of the detailed design planning, though it can be estimated
reasonably at the architecture and requirements level.

Estimating innovation means understanding how many technologies will be adopted and
estimating how many people, deliverables and processes will utilize the new technology.
Each new technology will affect resources, schedule and product development processes.
Does your change management allow you to change the process?

10/7/2008

Software Engineering Institute | Carnegie Mellon © 2006 Carnegie Mellon University

16

CSPIN Oct 2008

Bob

Ferguson

Concerns of “Big”:
Size the design responsibility

Everyone uses principally one of three strategies:
By organizational function (groups of skills)
+ |s easy, but may make too large a team
By function and feature
« Works ok if the architecture and domain are familiar
May cause design problems because of responsibility conflicts
By product architecture

» May create resource contention and political problems
+ This one best represents the “project-ized organization.”

This slide is presented because assigning too much responsibility to any individual or team
will increase project risk.

Besides team-to-component size considerations, failure to align responsibility properly can
result in other dysfunction.

10/7/2008

Software Engineering Institute | Carnegie Mellon © 2006 Carnegie Mellon University

17

10/7/2008
CSPIN Oct 2008
Bob Ferguson

PM Strategies for Innovation

Avoid multitasking the inventor
Give the inventor an assistant for technology transfer

Never let invention occupy the critical path
+ Corollary: never let invention be deferred.

- If the invention is on the critical path, be careful of starting the
related design activities and acquiring the resources before
doing the needed transition work such as design rules.

It is hard to emphasize how severe a problem multitasking can be. Research literature
suggests that people can handle two conceptual streams but not 3 or more. Task switching
becomes very expensive.

Since lead time for invention is somewhat unpredictable, adding multitasking increases the
unpredictability. In other words, you just added to the project risk.

Software Engineering Institute | CarnegieMellon © 2006 Carnegie Mellon University 18

CSPIN Oct 2008
Bob Ferguson

10/7/2008

Analyze Modularity Effects

Design Structure Matrix (DSM)

+ DSM has proved to be a successful approach to partitioning and
analyzing very large systems. www.dsmweb.org

Three Configurations that Characterize a System
Relationship Parallel Sequential Coupled
Graph
Representation _’“"B"
Three Configurations that Characterize a System
Relationship Parallel Sequential Coupled
A B A B A B
DSM A = A = N
Representation A . A - 4 -
B N B X BIxH

We mentioned the importance of modularizing the project. Sometimes the modularity results
in development “cycles” or coupling where the output of A affects the input of B and the
output of B requires the input of A.

Not every cycle can be broken, however it is important to utilize as few cycles as possible
and to keep them close together as possible.

Software Engineering Institute

Carnegie Mellon

© 2006 Carnegie Mellon University

19

10/7/2008
CSPIN Oct 2008

Bob Ferguson

DSM Types and Methods

]]?SM Dl Representation Application Analysis Method
ypes
- |[Partitioning, Tearing,
et tll;laslll(t//lgsmlllltt};elationshi s :;Oiliﬂcm 50(1:1 eéilleﬂtlpui; re;::(t:?izg i, SHnA G
P i DS ised g ¥ Eigenvalue Analysis
Parameter- |[Parameter decision points|Low level activity sequencing Partlt_lomng,. Tem‘mg,
; - Banding, Simulation and|
based and necessary precedents [and process construction ; .
Eigenvalue Analysis
T Multl-tea.m. interface||Organizational des;gn, mtgrface B
characteristics management, team integration
Component- (|Multi-component System architecting, engineering -
g ; : Clustering
based relationships and design

There are several methods for using Design Structure Matrices. Each provides potential for
action.

Software Engineering Institute | Carnegie Mellon © 2006 Carnegie Mellon University 20

CSPIN Oct 2008
Bob Ferguson

DSM Example

A B CDETFGH I J KL

This matrix represents lots of
interactions.

Structuring teams to modules is
not clear.

By re-ordering the matrix we can
achieve a better better modularity
of both task and design.

10/7/2008

Software Engineering Institute

Carnegie Mellon

© 2006 Carnegie Mellon University

21

10/7/2008
CSPIN Oct 2008
Bob Ferguson

DSM Example

(c) Partitioned DSM

C AK L J F | EDHG

Feed
Forward

Feedback

@ TOmM-—-TMcecr X>P O

Reordering the matrix yields a significantly better structure. We can use this approach to
improve, component relationships, team relationships, and task relationships. The goal is to
rearrange the order of rows and columns to reduce the effects of the cycles.

Software Engineering Institute | CarnegieMellon © 2006 Carnegie Mellon University 22

10/7/2008

CSPIN Oct 2008
Bob Ferguson

Monitor Invention
Technology Transition Continues to be a problem

How mature is the technology? Can both technology and
processes be acquired? Do we develop them?

Examine schedule for possible integration points.

+ What organizational capability is needed for use at this point of
program?

+ What organizational capacity for this work is needed (skills)?
Have we identified technical performance measures?

Create Kiviat diagram showing the various dimensions of
technical and learning measures represented

+ Review after each integration.
+ Progress is evidenced when all dimensions are at the desired

level.

Software Engineering Institute | CarnegieMellon © 2006 Carnegie Mellon University

23

CSPIN Oct 2008
Bob Ferguson

Testing

Transition

Interface

Radar Chart (Kiviat) for Transition

NOTES: When polygon does not cover
Red circle, risk is unacceptable.

Yeiiow Circie, fisk is manageabie.
Covering yellow circle is “Green” or low
risk.

Skills

Multiple axes represent the
different things that have to
be learned to deploy the
technology

Rings can represent whether
the level of completion is

accentahla
aCCepianic.

Technology transition is about teaching the organization. It is represented on each axis of
organizational capability. At each major milestone, the risk can be evaluated. Scores on all
axes are used to judge whether the technology is maturing as planned.

10/7/2008

Software Engineering Institute

Carnegie Mellon

© 2006 Carnegie Mellon University

24

10/7/2008

CSPIN Oct 2008
Bob Ferguson

Product Technical Progress

How does a PM ascertain the reality of “technical progress”?
+ Rule 0: progress never counts unless there is a quality check.

+ Verification: the specification (feature function) is checked for
completeness.

+ Verification: the design meets explicit quality goals and is checked
for consistency.

- Validation: the exposed design meets customer expectations

- Validation: the modeling technique in the design is suitable for use
by the organization.

Software Engineering Institute | CarnegieMellon © 2006 Carnegie Mellon University 25

CSPIN Oct 2008
Bob Ferguson

Assessing Technical Progress & Quality

We can improve our assessment of technical progress & quality by
analyzing these views as they represent the knowledge captured in the
system

Krutchen's 4+1 view model* is a useful representation for a software
system

Describes how the work is
partitioned to the
developers and how the
work is progressing

Describes the functions and
features of the solution —
evolves from the business
and analysis models

Describes how the software
lives on physical networks
and hardware

Describes the connections
and sequencing between

tha cyetame and
me SYSIet

components I

Describes the “fitness for use”

“ Reference Krufchen, P “The 4+1 View Model of Architecture®, IEEE Soffware, Novemnber 1985

Software Engineering Institute | Carnegie Mellon 26

26

CSPIN Oct 2008
Bob Ferguson

Systems Engineering/Integrator View

SE View

Diagrams:

« class

* timing, sequencing

* object

» Component and
connector approach

» System layering

Design rules

How is component design responsibility established?

Performance objectives of components including throughput and latency.
Component and connecter diagrams (wiring, object classes and public methods)
Are all requirements allocation to functional component?

Apply failure effects to prepare integration test cases and system test cases.
Coupling measure

| have a draft of a12-page guide about applying these concepts. The guide consists of a
customizable set of questions related to each of the architectural views. The questions are
then applied to a set of design reference cases. (next slide)

Software Engineering Institute | Carnegie Mellon 27

27

CSPIN Oct 2008
Bob Ferguson

Design Reference Cases (DRC)

Design Reference Cases are scenarios.

Use DRCs to probe the design solution. Chose them by
identifying high-level capability needs and creating scenarios
that stress the system.
- Mission threads
Maintenance and support threads
Performance analysis
Safety analysis

Select specific DRCs by understanding the current technical
milestone under review.

A number of DRCs are needed but only a few need to be checked during any specific design
review.

Say for example, you are going to test 2 mission threads, a failure case and a performance
case.

Failure case: “What happens if we lose a node of the network for 24 hours? How much
capability remains?”

Software Engineering Institute | Carnegie Mellon 28

28

CSPIN Oct 2008 10/1/2008
Bob Ferguson

Example

A Critical Safety Case:
+ Context: There riders on the train
« Stimulus: Equipment malfunction
« Desired response sequence
— Vehicle stops
— 3™ rail power shutdown
Announcement, manual latch accessible
— Emergency team dispatched
Operator action

“Show me how the design models implement this case”
» What components are affected, layers, etc.

Software Engineering Institute | Carnegie Mellon © 2006 Carnegie Mellon University 29

CSPIN Oct 2008
Bob Ferguson

Scoring Procedure

View axes are scored by associating deliverable to PPQA,
Verification and Validation score.

» Systems Engineering view questions: g-force, software timing,
path through the layers of the system, ...

» Development questions: CM system audit, productivity, process
quality, ...

» Deployment questions: prototype delivery, supply chain
planning,

Logical view: what the system looks like from the external
business view, training, consistency of specifications, ...

[Ty f‘n.-n \VH

3

Evemantia D Aafara imiar 1o arnmrad] amsasrAima fo
LALCT MUV | F\CICI CIILT wvAao VITW 1O OLUITU aulLulull |9 w
score of lowest rated DRC.

10/1/2008

Software Engineering Institute | CarnegieMellon © 2006 Carnegie Mellon University

30

CSPIN Oct 2008 10/1/2008
Bob Ferguson

Engineering Progress = “Yellow” Stoplight

HLD Review

Loglical

Reference Case (

4 DRCs tested / Y

Case A8 failed timing requirement
\/ —

Deployment - Development

7SE

Reported 30Aug08

Software Engineering Institute | CarnegieMellon © 2006 Carnegie Mellon University 31

CSPIN Oct 2008 10/1/2008
Bob Ferguson

SE’s strategies

Tradeoff Analysis
- Methods exist to predict the number of experiments required for
convergence.
Innovation
+ Lobby for dedicated resources based on schedule risk.

- Lobby for parallel development efforts based on schedule and
product risk.

Software Engineering Institute | CarnegieMellon © 2006 Carnegie Mellon University 32

CSPIN Oct 2008 10/1/2008
Bob Ferguson

Summary

We described mechanisms for managing large projects.
Modularity effects on project structure
Monitoring technical progress
Monitoring technology insertion

All these are intended to help you plan, monitor and
manage responses to the uncertainties of nhew product
development work.

Software Engineering Institute | CarnegieMellon © 2006 Carnegie Mellon University 33

Name
Program Name

Contact Information Slide

Bob Ferguson

Sr. Member of the Tech. Staff
SEMA

Telephone: +1 412-268-9750
Email: rwf@sei.cmu.edu

World Wide Web:

U.S. mail:

Software Engineering Institute
4500 Fifth Avenue

Pittsburgh, PA 15213-2612
USA

Customer Relations
Email; customer-

www.sei.cmu.edu

R T S P PR ralatinnaeail emn adn

WwWww.sel.cimu.edu/contacr.num DAL IS e D T LI
Telephone: +1 412-268-5800
SEl Phone: +1 412-268-5800

|

10/7/2008

Software Engineering Institute | Carnegie Mellon

34

