Ritmico Progress, Rayney Wong

Developing Process Performance Baselines Process Performance Objectives Process Performance Models

About the Presentation

- About how a few companies at high maturity developed their PPB, PPO, PPM to meet business goals.
- The companies performed project based software development.
- Each company only has one type of methodology and lifecycle:
 - Iterative (Agile) or Waterfall.

About the Presentation

About how they took on a path that made high maturity acceptable by the staff.

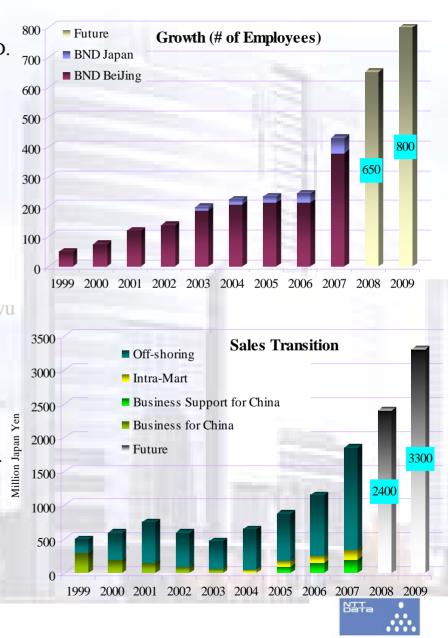
Ritmico Progress, Rayney Wong

- Ritmico Progress is led by Rayney Wong who is a SCAMPI High Maturity lead appraiser, and a CMMI Introduction instructor. Ritmico Progress is a SEI Agreement Partner for the CMMI Product Suite and is a registered company in Singapore.
- Rayney has over 20 years of software development and project management experience, ranging from radar communication systems, network systems, to publishing printer drivers and windows applications, and developing common coherent processes shared by offsite development centers.
- Rayney's experience includes high maturity knowledge in developing models and Statistical process control toolkits, developing business strategic initiatives and staff development activities to achieve business goals, and training in implementing process improvements and software development. Companies have grown from 50 to over 500 people under Rayney's guidance.
- Rayney@RitmicoProgress.com

- Since 1987 NashLabs® has helped Clients achieve a strategic advantage in the production of world-class software. We're focused on the measurement and improvement of software processes that work in the real world.
- Nash Laboratories[®] is a Partner of the Software Engineering Institute at Carnegie-Mellon. As a Partner, the company is licensed to provide the latest generation of SEI technologies:
 - Introduction to the CMMI[®]
 - Introduction to the People-CMM[®]
 - SCAMPISM High-Maturity Appraisals
 - CMMI[®] Process Consulting
 - Six Sigma Training and Consulting
 - Rayney is an Associate with NashLabs[®].

5

BEIJING NTT DATA SYSTEMS INTEGRATION CO., LTD.


Founded in October 1, 1998 Full Name: BEIJING NTT DATA SYSTEMS INTEGRATION CO., LTD. Location: BEIJING, CHINA, Headquarters Number of employees: 640 The main business •Off-shoring Software Development for JAPAN •System integration for Domestic business of CHINA Business support for Domestic business of CHINA Offshore development base in: BeiJing BEIJING, SHANGHAI, TIANJIN **F**okvu Beijing NTTDATA JAPAN: Sales/SE Dispatch etc Main skills: •Skill is widely distributed that covers open system trends •Acquisition of qualified skills: Oracle, MS systems, PMP Project Management & Security - CMMI and ISO27001 Image of the future: Current: off-shoring Software Development business. Future:

•High Level off-shoring Software Development business.

Service for the advance of Japanese Company into China Market

Domestic business of CHINA

•Roll out Business for European and American enterprise

北京NTT DATA系

VanceInfo Technologies Inc.

Founded in 1995 - 13 year track record of working with global companies

Full Name: VanceInfo Technologies Inc.

Location: Beijing , Headquarter

NYSE: VIT First China based Outsourcing firm listed in US markets

Over 4500 diverse employees: 4412 developers

Substantial Global Footprint

USA (New York, Seattle, San Francisco),

- China (Beijing, Shanghai, Nanjing, Tianjin, Hangzhou, Xian, Dalian Chengdu, Shenzhen and Hong Kong)
- Singapore & Japan
- Australia (Melbourne)

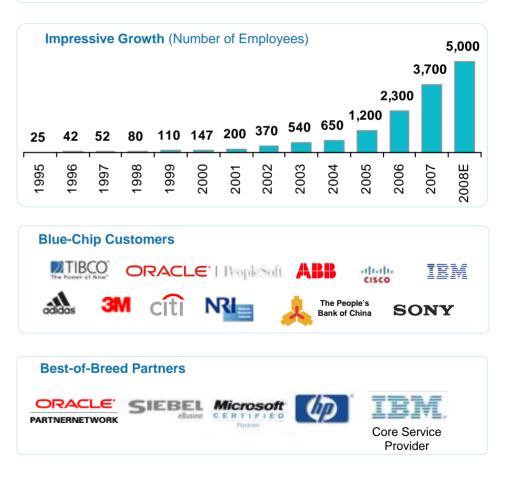
Core capabilities

- IT Services for Fortune 1000 companies and SMEs
- Research & Development Services (Product Development)
- Infrastructure Services
- ITES/BPO

Domain knowledge & Vertical focus

- Banking Financial Services and Insurance (BFSI)
- Manufacturing & Retail & Distribution
- Telecom
- Technology

Centers of Excellence


- Microsoft & Java
- Enterprise Solutions: SAP, Oracle, PeopleSoft & Siebel
- Business Intelligence & Data Warehousing
- Messaging, EAI/B2Bi and SOA
- QA & Testing Services

Quality delivery — CMMI and ISO certified

People Oriented Firm

- Management Team with global experience
- Voted "Top 100 Employers Most Favored by University Graduates"

Perficient China Ltd.

Facts and History

- Perficient's Global Delivery Center was established in 2004
- 130+ consultants -- 200 by EOY 2008
- Located in Hangzhou Silicon Valley of China
- All business in Perficient China is conducted in English
- Agile methodology delivering high priority requirements incrementally

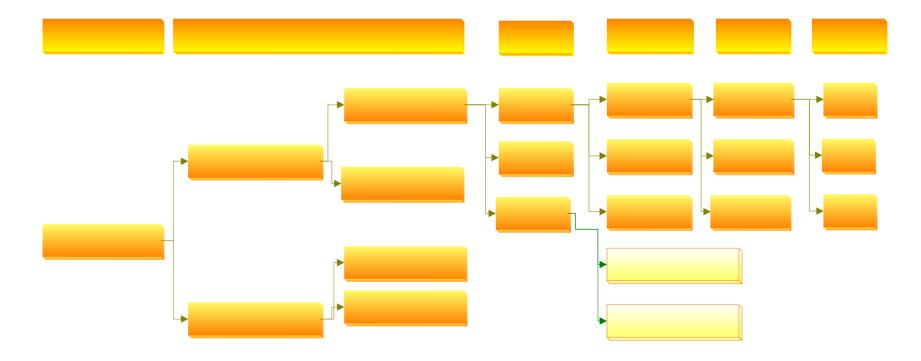
China Global Delivery Center

Main Business

- Web Application and Portal Development
- Content Management Development
- CRM / Siebel Implementation
- SOA, Integration and Messaging Implementation
- BPM Implementation

Perficient

Terminologies

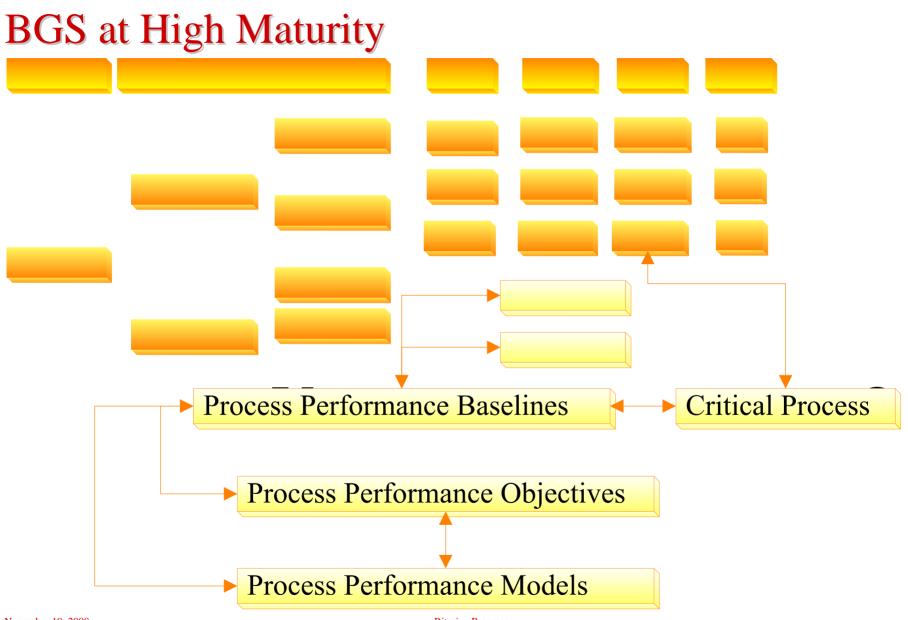

PPB	Process-Performance Baselines				
	A documented characterization of the actual results achieved by following a process,				
	which is used as a benchmark for comparing actual process performance against				
	expected process performance.				
PPO	Quality and Process-Performance Objectives				
	Objectives and requirements for product quality, service quality, and process				
	performance. Process-performance objectives include quality; however, to emphasize the				
	importance of quality in the CMMI Product Suite, the phrase quality and				
	process-performance objectives is used rather than just process-performance objectives.				
PPM	Process-Performance Models				
	A description of the relationships among attributes of a process and its work products				
	that is developed from historical process-performance data and calibrated using collected				
	process and product measures from the project and that is used to predict results to be				
	achieved by following a process.				

Terminologies

Base	A distinct property or characteristic of an entity and the		
Measures	method for quantifying it. E.g.:		
	 Number of defects, 		
	 Size of Module in KLoc (Thousand Lines of code) 		
Derived	Data resulting from the mathematical function of two or more		
Measures	base measures. E.g.:		
	 Defect Density = (Number of Defects) / Module Size KLoc 		

BGS, VOP-MAR

Purpose of all improvements are derived from the Business Goals Strategy (BGS).



VOP-MAR

A BGS exercise typically takes up a period of several

weeks and is performed annually.

1	Vision	Realizing and understanding the $\underline{\mathbf{v}}$ ision, breaking the vision down into its constituent parts.		
2	Objectives	Developing and prioritizing the goals and <u>o</u> bjectives that must be achieved to fulfill each part of the vision.		
3	P roblems	Identifying and analyzing the p roblems and root causes that are preventing us from reaching the goals, objectives, and vision.		
4	Measures	Determining the <u>m</u> easures to understand the extent of the problems and target measures to meet the objectives.		
5	Actions	Developing the <u>a</u> ctions for resolving the problems and reaching the goals. Improvements are aligned towards the objectives, vision and goals.		
6	R isks	Considering the side effects and costs of the actions in order to mitigate r isks and side effects caused by the actions.		

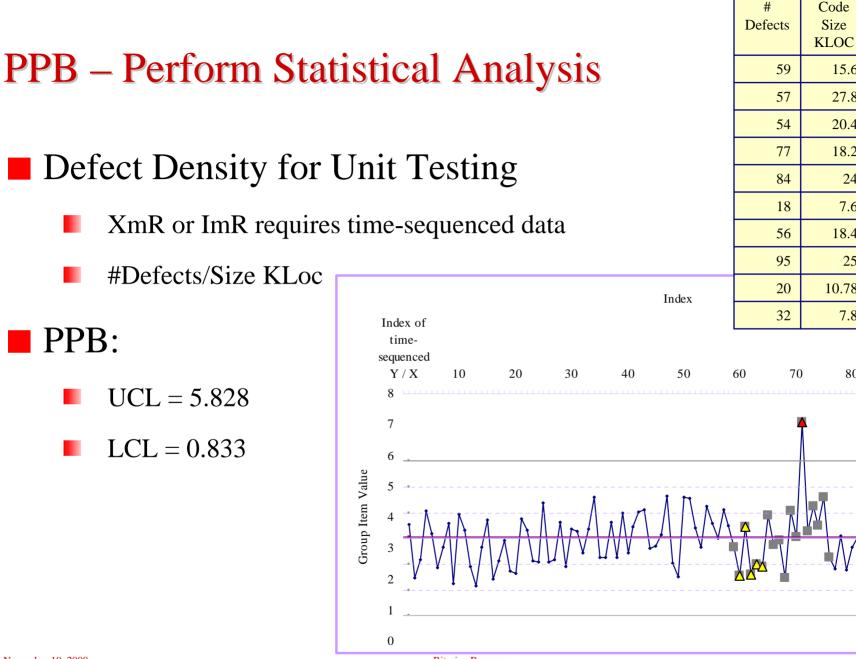
13

Copyright Rayney Wong

Ritmico Progress

About the Measures in this Presentation

- Measures were from one of the companies.
- Unit Testing of software modules with Test Cases.
- Unit testing is performed after source codes have been reviewed:
 - Co-worker cross-check review of all source codes
 - Peer Review of critical module's source codes
- Measures have been adjusted by multiplying with factors as true measures cannot be shown.


PPB – Define the derived measures (part of BGS)

Unit Testing of software modules base measures:

- #Defects found by the developer during unit testing of his module.
- Module code size in KLoc.
- #Test cases used to unit test the module.
- Total time in hours taken to test the module using the test cases.

Possible PPBs that can be derived:

- Defect Density = #Defects / Size KLoc
- Test Case Density = #Test cases / Size KLoc
- Test Speed = #Test cases / Testing time

Ritmico Progress

Defects /

Code Size

KLOC

3.782051282

2.050359712

2.647058824

4.230769231

2.368421053

3.043478261

1.85528757

4.102564103

90

3.5

3.8

Code

Size

15.6

27.8

20.4

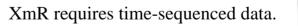
18.2

24

7.6

18.4

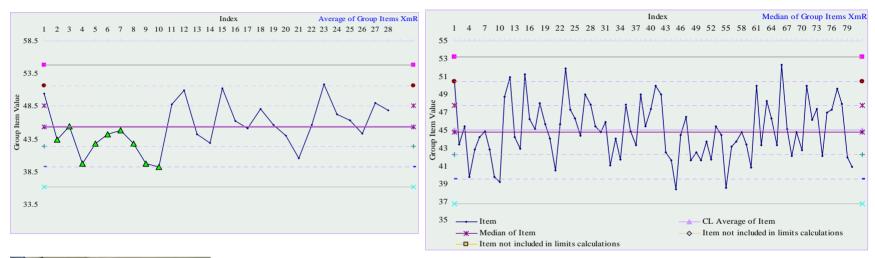
25


7.8

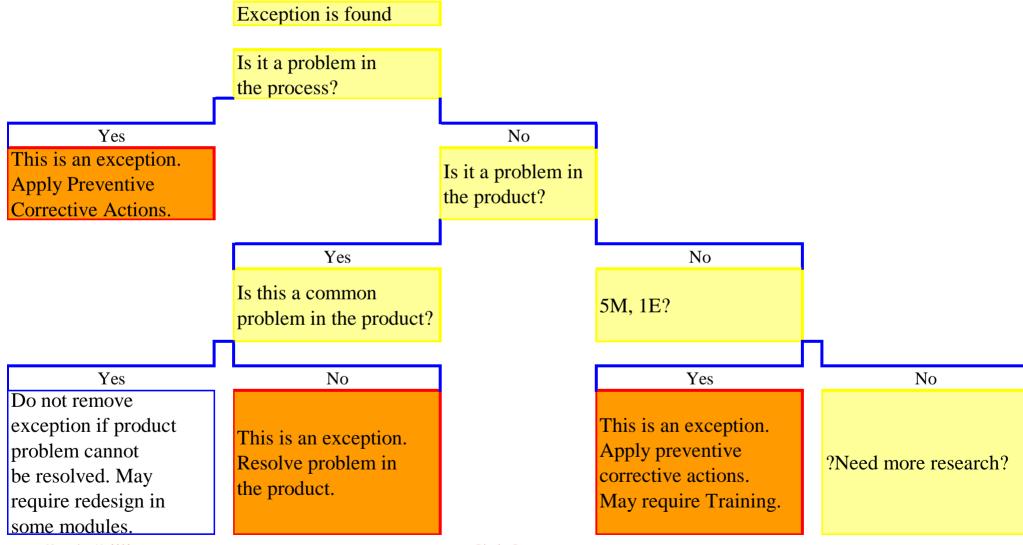
80

10.78

PPB – When to Develop?

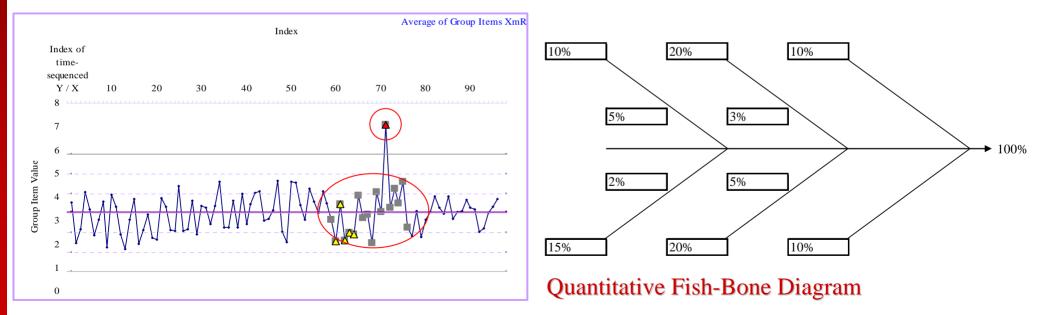

- Data are added into the XmR control charts as soon as each Unit Testing of a module is performed.
- How many data points before we can use the control charts?

X-Bar does not unless time-sequenced tests are performed.


False Alarms

Drive with care. Small changes at a time.

Can Exception be removed?



November 19, 2008

Ritmico Progress

For each exception or set of exceptions, perform a problem solving process to consider improvements to prevent them.

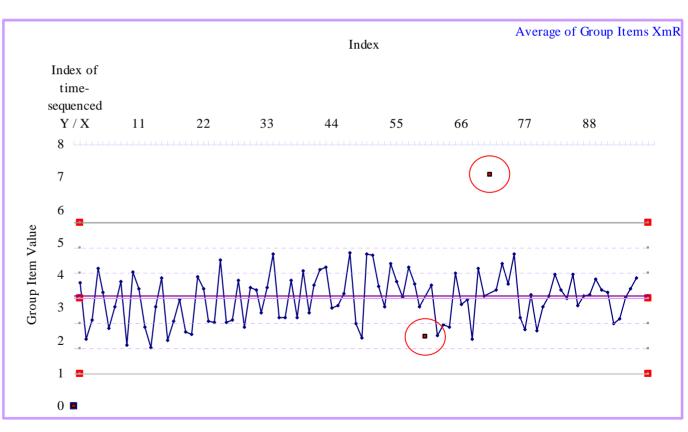
$PPB \rightarrow PPB'$

- Problem Solving Process must be done carefully to ensure improvements <u>are able to</u> prevent the exceptions.
- Problem Solving Process are performed by the practitioners with guidance from the EPG.
- Only remove the exceptions if there are improvements to prevent them.

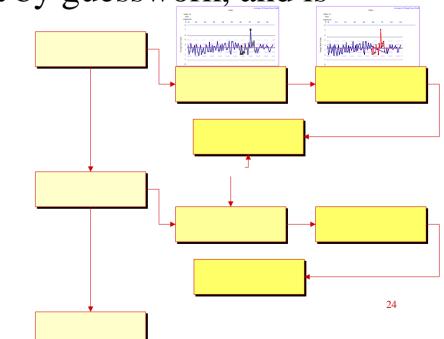
$PPB \rightarrow PPB'$

PPB' is the improved PPB that the project may achieve after applying the improvements.

Processes, templates, checklists, training must be updated so that improvements permeate across the organization and become institutionalized.

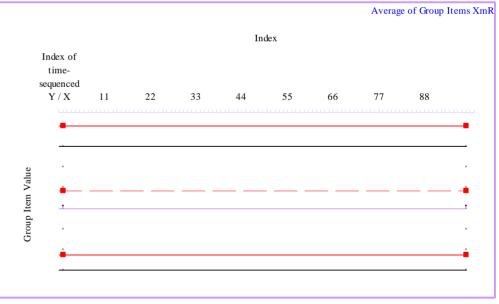

With Pilot projects to confirm improvements.

PPB' of UT Defect Density (#Defects/Size KLoc)


- UCL = 5.601
 - LCL = 1.005
- PPB earlier was:
 - UCL = 5.828
 - LCL = 0.833

PPB' \rightarrow PPO (before using PPM)

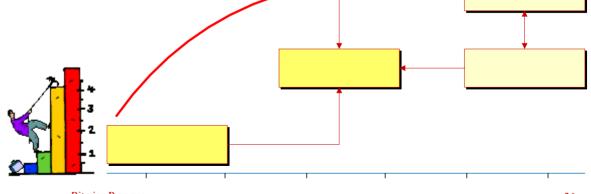
- Each iteration's PPB' is used as the interim PPO for the next iteration or similar project.
- PPB' as PPO must be derived and calculated from adjustments to historical data, not by guesswork, and is therefore a <u>realistic objective</u>.


Ritmico Progress

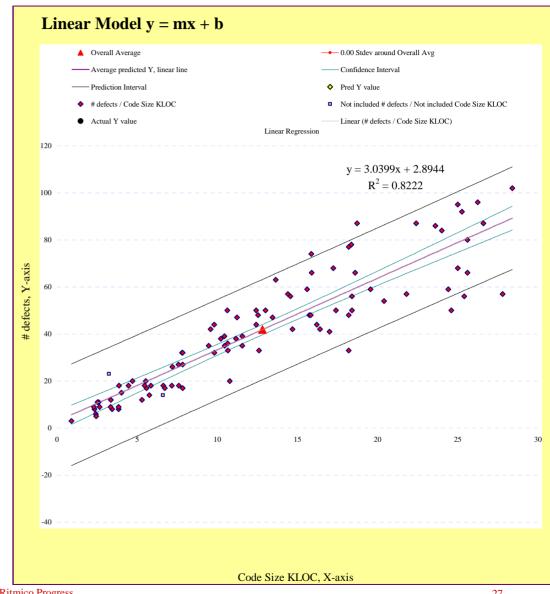
PPB' \rightarrow PPO (before using PPM)

Each subsequent iteration's derived PPB and PPB' gets better and better as improvements are <u>continually</u> and <u>conscientiously</u> applied by practitioners.

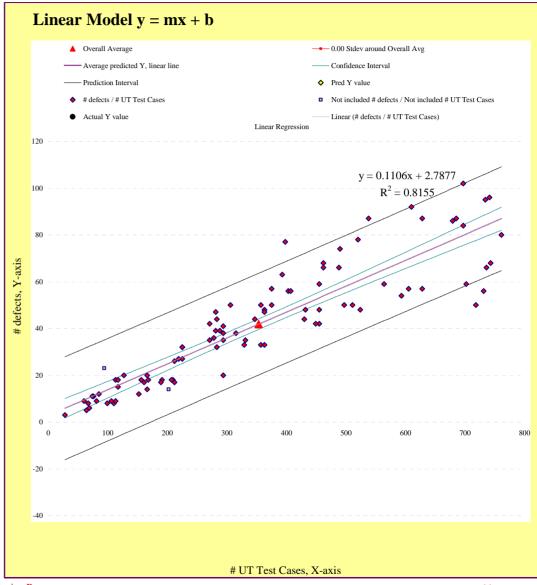
May not be for every iteration but for the overall project.

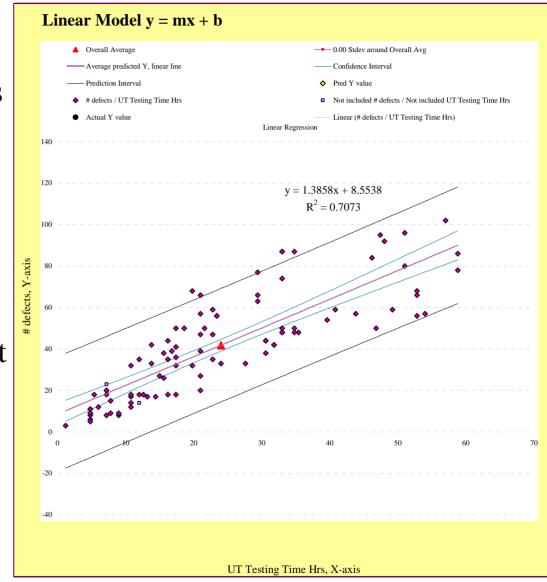

Data shown are not from the organization.

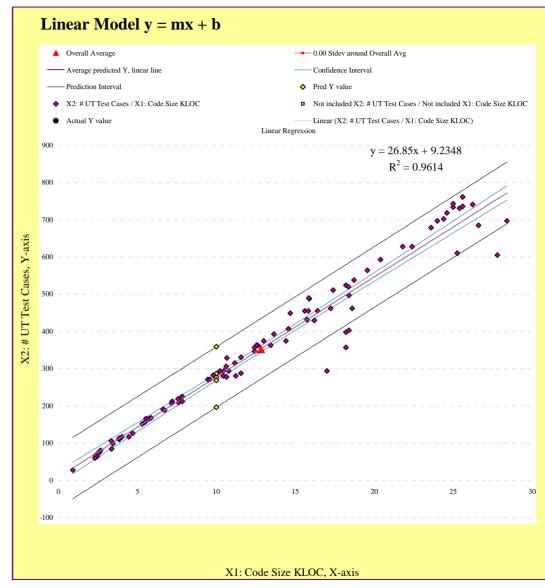
For illustration purpose only.

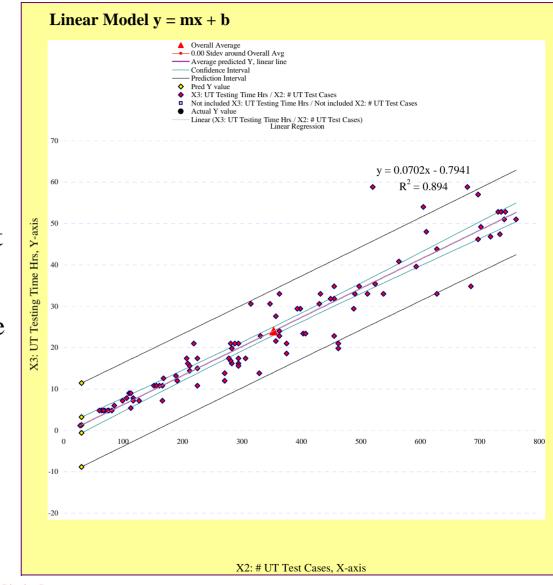

25

PPO (before using PPM)

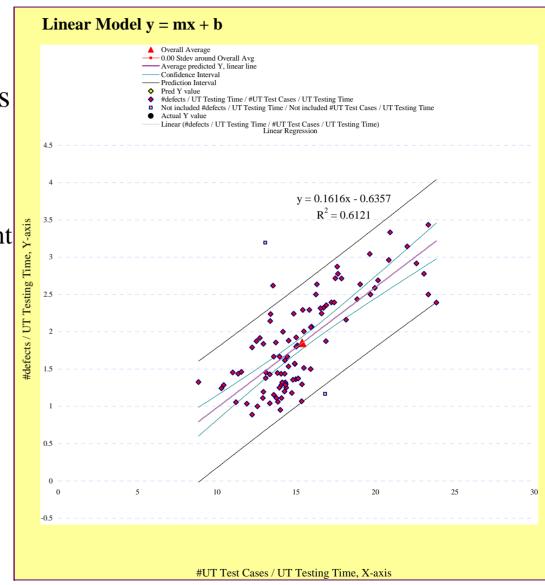

- Each PPB' incrementally progresses towards the VOB and VOC as improvements are continuously applied.
- A process performance is therefore not immediately compared against its VOB or VOC.
- Incremental <u>calculated</u> progress is planned with realistic timelines.


- Use PPB' data to develop the correlations.
- Begin with a simple two variable regression that the practitioners can <u>see</u> and <u>feel</u>.
 - Output Y: #Defects found in a module during UT
 - Input X: Module Size KLoc
- Tool needs to be interactive.

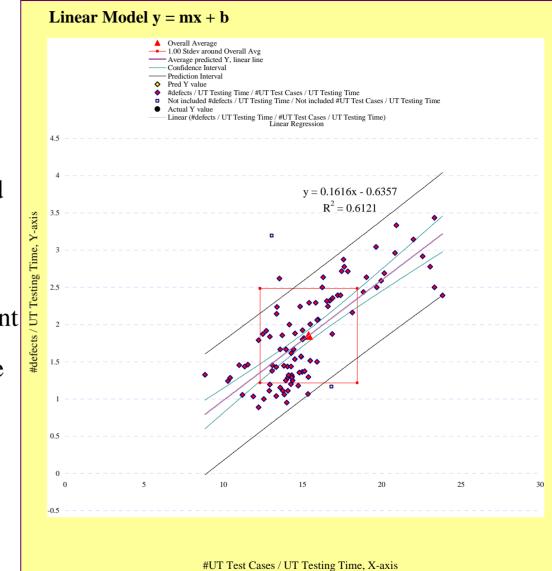

- Develop other correlations in separate regressions so that the practitioners can see how other variables affect the output Y.
 - Output Y: #Defects found in a module during UT
 - Input X: #Test cases to test the module


- Exceptions or other data points that were removed would not be in the PPB' correlations
- Output Y: #Defects found in a module during UT
- Input X: Time spent to unit test the module

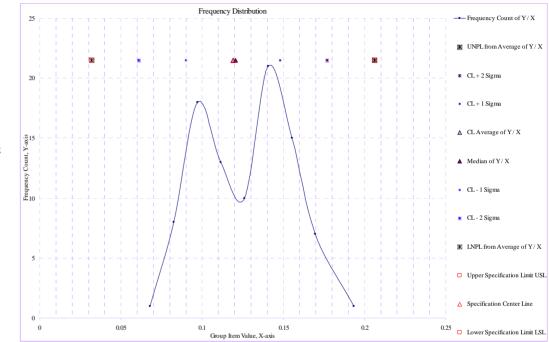
- Include other correlations to see how variables affect each other.
 - Output: #Test cases to test the module
 - Input X: Module Size KLoc



- Include other correlations to see how variables affect each other.
 - Output: Time spent to unit test the module
 - Input X: #Test cases to test the module

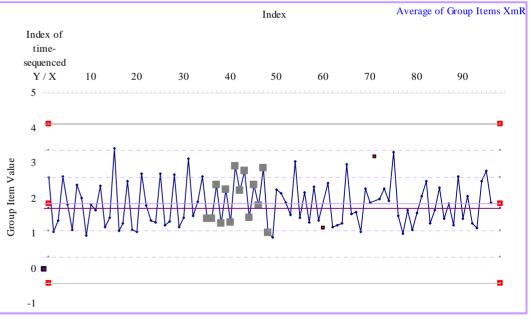

Modeling

- Later, include derived variables for modeling.
 - Output Y: #Defects found in a module during UT / Time Spent
 - Input X: #Test cases to test the module / Time Spent


Modeling

- Include other analysis as required
 - One standard deviation around the average
 - Output Y: #Defects found in a module during UT / Time Spent
 - Input X: #Test cases to test the module / Time Spent

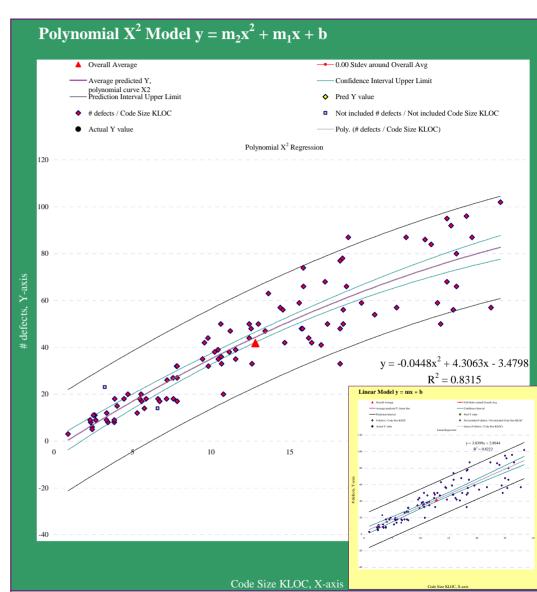
Frequency Distribution


- Frequency distribution
 - Y/X
 - Y: #Defects found in a module during UT / Time Spent
 - X: #Test cases to test the module / Time Spent
 - Senior developers
 - Junior developers
- Other tests of normality may be applied.

Exceptions

- There may be other exceptions to be improved.
 - Y/X
 - Y: #Defects found in a module during UT
 - X: Time spent to unit test the module

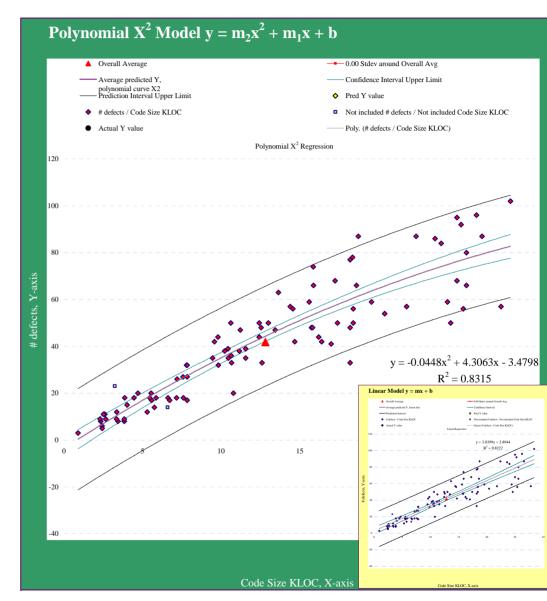
When the practitioners are comfortable with the correlations, develop the multiple regression model using the X_n variables.


Y: # Defects	X ₁ : Code Size KLOC	X ₂ : # UT Test Cases	X ₃ : UT Testing Time Hrs
59	15.6	455	22.8
57	27.8	605	54
54	20.4	593	39.6
77	18.2	398	29.4
84	24	697	46.2
18	7.6	209	16.2
56	18.4	403	23.4
95	25	734	47.4
20	10.78	294	21
32	7.8	225	17.4

$Y = 1.958602086 * X_1 + 0.059436937 * X_2 - 0.270573847 * X_3 + 2.251835318$

	Y: # Defects	X ₁ : Code Size	KLOC 2	K ₂ : # UT Test C	ases X ₃ : UT Te	sting Time Hrs	
Confidence Level	95.00%	<mark>6</mark> 0.05	Alpha				
Constant b set to zero?	Non Zero	0	-				
$y=m_1x_1+m_2x_2+m_3x_3+\ldots+b$		m_1	m_2	m3	b	_	
Coefficients		1.958602	0.05943	-0.27057	2.251835318	Constant b	
Standard Errors for m _n		0.74684	0.02975	0.221569	2.183538832	Standard erro	or for b
Upper 95.00%		3.44233	0.11855	0.169613	6.589816229		
Lower 95.00%		0.474874	0.00031	9 -0.71076	-2.086145592	,	
R^2	0.830087394	4 10.55925	Standard	error for Y es	stimate		
F Statistics	146.561355	8 90	df			1.59	71E-34 F Distribution
ssreg	49023.8047	7 10034.8	ssresid				
t-observed values		2.62252	1.997				674497 t-critical
P-values		0.01025	0.04880	0.225211	0.305173947		

- As more analysis is performed,
 practitioners may realize that a
 linear regression may not be
 the case for some variables
 correlation.
 - Output Y: #Defects found in a module during UT
 - Input X: Module Size KLoc

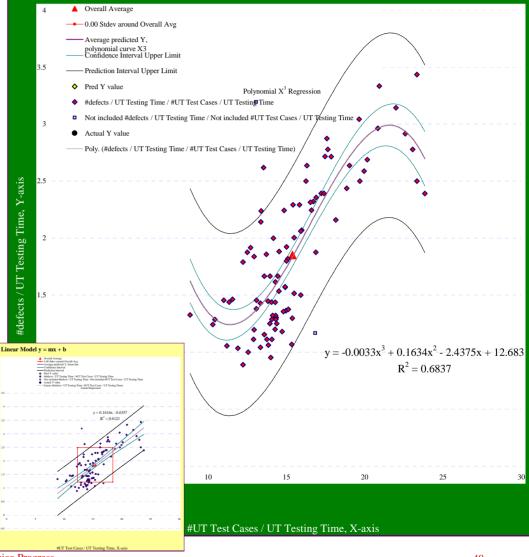

Defeate

Greatest gradient is at 9 KLoc

Code Cine

Defect Density

Defects	Code Size	Defect Density
0.781777055	1	0.781777055
4.953784418	2	2.476892209
9.036253663	3	3.012084554
13.02918479	4	3.257296197
16.93257779	5	3.386515559
20.74643268	6	3.45773878
24.47074945	7	3.495821349
28.10552809	8	3.513191012
31.65076862	9	<u>3.516752069</u>
35.10647103	10	3.510647103
38.47263532	11	3.497512302
41.74926149	12	3.479105124
44.93634954	13	3.456642273
48.03389947	14	3.43099282
51.04191129	15	3.402794086
53.96038498	16	3.372524061
56.78932055	17	3.340548268
59.52871801	18	3.307151
62.17857734	19	3.272556702
64.73889856	20	3.236944928
67.20968166	21	3.200461031
69.59092663	22	3.163223938
71.88263349	23	3.125331891
74.08480223	24	3.08686676
76.19743285	25	3.047897314
78.22052535	26	3.008481744

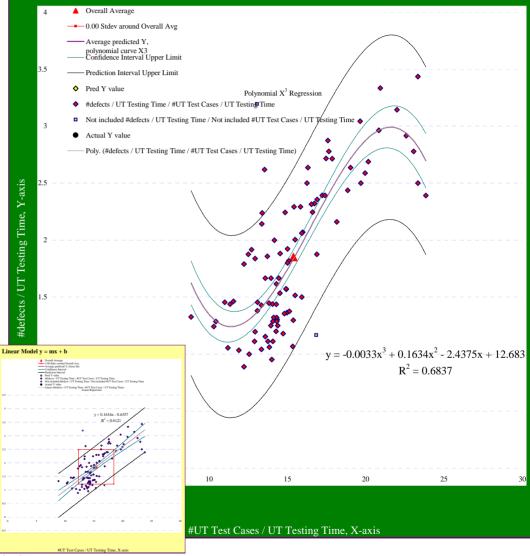


Ritmico Progress

November 19, 2008

- Output Y: #Defects found in a module during UT / Time
 Spent
- Input X: #Test cases to test the module / Time Spent

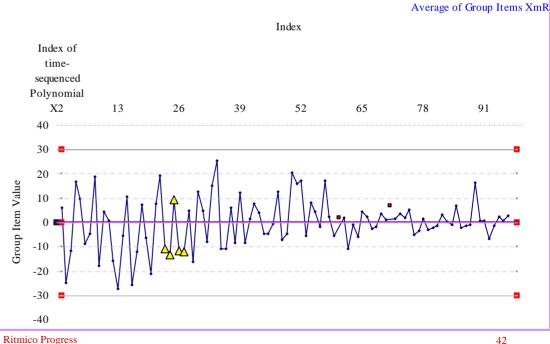
Polynomial X³ Model $y = m_3 x^3 + m_2 x^2 + m_1 x + b$



Greatest gradient range:

15-23 test cases per hour.

Defects	UT Test cases	Defects / UT
/ Testing Time	/ Testing time	Test Cases
1.347993798	10	0.13479938
1.24901571	11	0.113546883
1.258854477	12	0.10490454
1.357688464	13	0.104437574
1.525696034	14	0.108978288
1.743055554	15	0.116203704
1.989945388	16	0.124371587
2.246543901	17	0.132149641
2.493029458	18	0.138501637
2.709580423	19	0.142609496
2.876375161	20	0.143818758
2.973592038	21	0.141599621
2.981409418	22	0.13551861
2.880005665	23	0.125217638
2.649559146	24	0.110398298
2.270248224	25	0.090809929
1.722251265	26	0.066240433
0.985746634	27	0.036509135


Polynomial X³ Model $y = m_3 x^3 + m_2 x^2 + m_1 x + b$

Ritmico Progress

# Defects	Code Size KLOC	# Defects / Code Size KLOC	Polynomial X ² Residual
59	15.6	3.782051282	6.196259923
57	27.8	2.050359712	-24.63645579
54	20.4	2.647058824	-11.73795637
77	18.2	4.230769231	16.93414707
84	24	3.5	9.91519777
18	7.6	2.368421053	-8.662361209
56	18.4	3.043478261	-4.599406317
95	25	3.8	18.80256715
20	10.78	1.85528757	-17.73976155
32	7.8	4.102564103	4.614264586

The residual of the polynomial X² model should then be used in the XmR control chart to detect exceptions instead of Y/X.

PPM improved

The preferred regression formula is used in the multiple regression:

Y: # Defects	Code Size KLOC \rightarrow -0.0448X ₁ ^2 + 4.3063X ₁ - 3.4798	X ₂ : # UT Test Cases	X ₃ : UT Testing Time Hrs
59	52.80374	455	22.8
57	81.63646	605	54
54	65.73796	593	39.6
77	60.06585	398	29.4
84	74.0848	697	46.2
18	26.66236	209	16.2
56	60.59941	403	23.4
95	76.19743	734	47.4
20	37.73976	294	21
32	27.38574	225	17.4

PPM

Y: # Defects		e Size KLOC → 2 + 4.3063X ₁ -		X ₂ : # UT Te	est Cases	X ₃ : UT Testing	Time Hrs
Confide Constant b s	ence Level et to zero?	95.00% Non Zero	0.03	5 Alpha			
$y=m_1x_1+m_2x_2+m_3x_3+m_3x+$	$n_3x_3 + + b$		m_1	m ₂	m3	b	
С	oefficients		0.065908	8 0.119684	-0.21865	5 2.054101583	Constant b
Standard Err	rors for m _n		0.095014	4 0.018365	0.229078	3 2.40169675	Standard error for b
Upp	er 95.00%		0.254669	9 0.15617	0.236454	6.825491266	
Low	ver 95.00%		-0.1228	5 0.083197	-0.67375	5 -2.717288101	
	R^2	0.818075672	10.9261	1 Standard er	rror for Y e	estimate	
l	F Statistics	134.9037284	90) df			3.42911E-33 F Distribution
	ssreg	48314.40909	10744.2	2 ssresid			
t-obser	ved values		0.69366	6.516767	0.954476		1.986674497 t-critical
	P-values		0.48967	7 4.05E-09	0.342399	0.394672276	

P-values did not improve so do not use the earlier regression formula for X_1 .

PPM

- $Y = 1.912166199 * X_1 + 0.057942217 * X_2 0.003927848 * (X_3)^2 + 0$
- Constant b (intercept) set to zero
- 90% confidence level. P-values have improved by using $(X_3)^2$.

Y	7: # Defects	X ₁ : C	Code Size KLOC		LOC X_2 : # UT Test Cases		X ₃ : (U	T Testing Time Hrs)^2	
Confidence Le Constant b set to ze		0.00% Zero	0.1	Alpha					
$y=m_1x_1+m_2x_2+m_3x_3+$.+b		m_1	m_2		m3		b	_
Coefficie	ents		1.912166	0.0579	942	-0.00393		0	Constant b
Standard Errors for	m _n		0.733273	0.0271	.62	0.002075	#N	J/A	Standard error for b
Upper 90.0	00%		3.130698	0.1030)79	-0.00048	#N	J/A	
Lower 90.0	0%		0.693634	0.0128	305	-0.00738	#N	J/A	
	R^2 0.9554	83871	10.45901	Standard error for Y estimate			stimate		-
F Statis	tics 651.06	76344	91	df					1.21531E-54 F Distribution
SS	sreg 213662	2.4368	9954.563	ssresid					
t-observed val	lues		2.607713	2.1332	218	1.892992	#N	J/A	1.661771156 t-critical
P-val	lues		0.010653	0.0355	598	0.061537	#N	J/A	

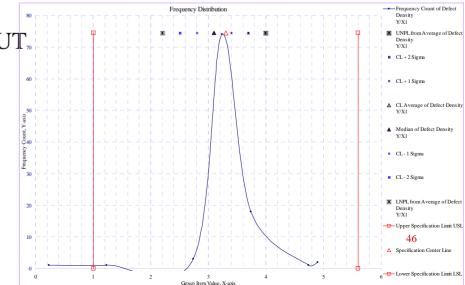
Monte Carlo with X_3 as $(X_3)^2$

Simulation of the following:

- I X₁ ranges from 1 to 50 KLOC of Module Size
- X_2 ranges from >= 1 Test Cases

(Max test cases simulated was up to 1448, correlated with file size)

Ritmico Progress


(X_3)^2 ranges from >=1 Testing Time

(Max testing time simulated was up to 12624 hrs², correlated with # test cases)

 $12624 \text{ hrs}^2 = (112.35 \text{ hrs})^2$

- 100,000 simulations of 2,000 instances of UT
- USL=5.601, LSL=1.005
- Result: 97.4% >=LSL , 98.85% <= USL

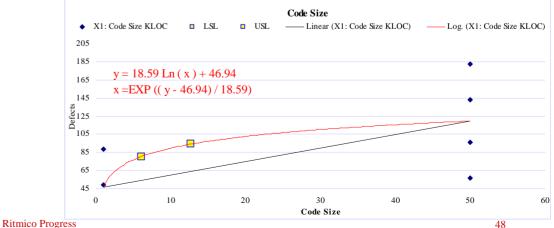
96.25% within LSL and USL

Optimum range of X₁: Code Size

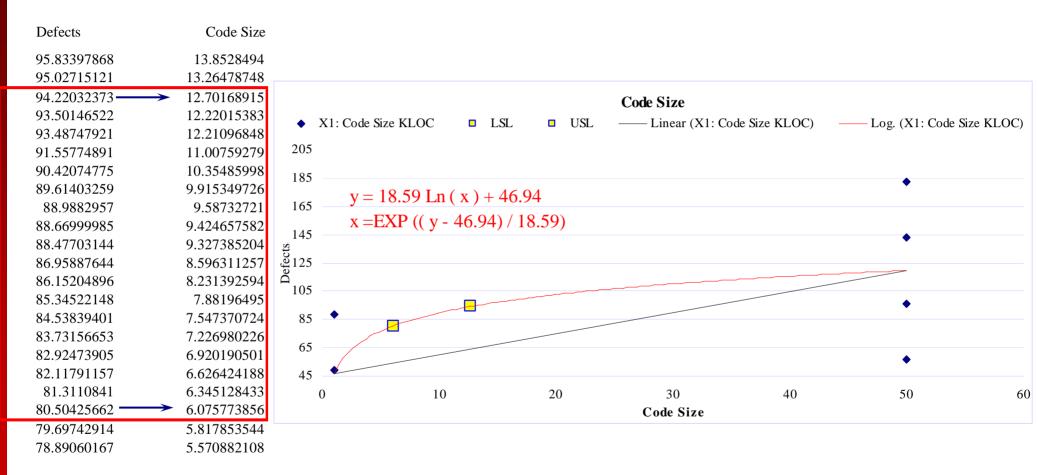
To ensure PPO can be achieved or *exceeded*

Arrange the input variables in the possible permutations (2ⁿ) of their <u>reasonable</u> minimum and maximum values

Remove -ve

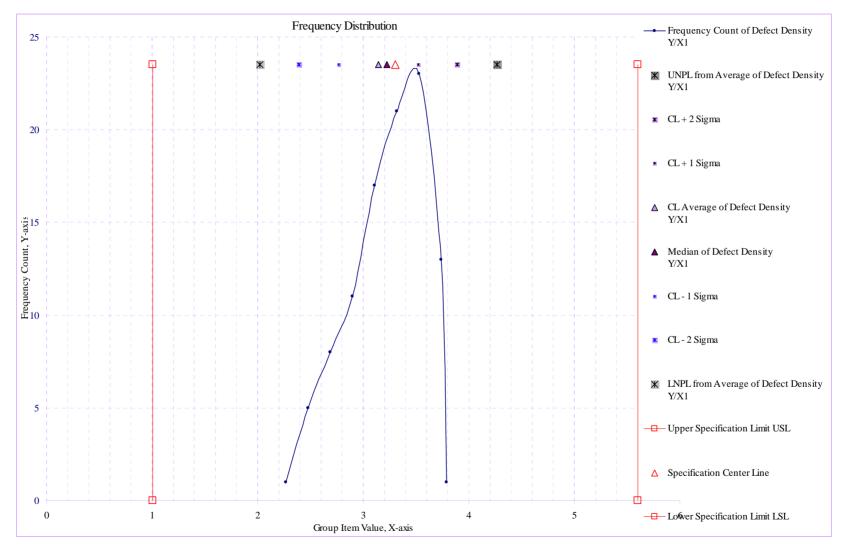

 $Y = 1.912166199 * X_1 + 0.057942217 * X_2 - 0.003927848 * (X_3)^{2}$

X1	X2	X3
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1


	Y: # Defects	X ₁ : Code	X ₂ : # UT	X ₃ : UT
		Size	Test Cases	Testing
		KLOC		Time
				Hrs^2
	2.47587698	1	10	4
Υ		1	10	10000
	88.8097803	1	1500	4
	49.5470133	1	1500	10000
	96.1720207	50	10	4
	56.9092537	50	10	10000
	182.505924	50	1500	4
	143.243157	50	1500	10000

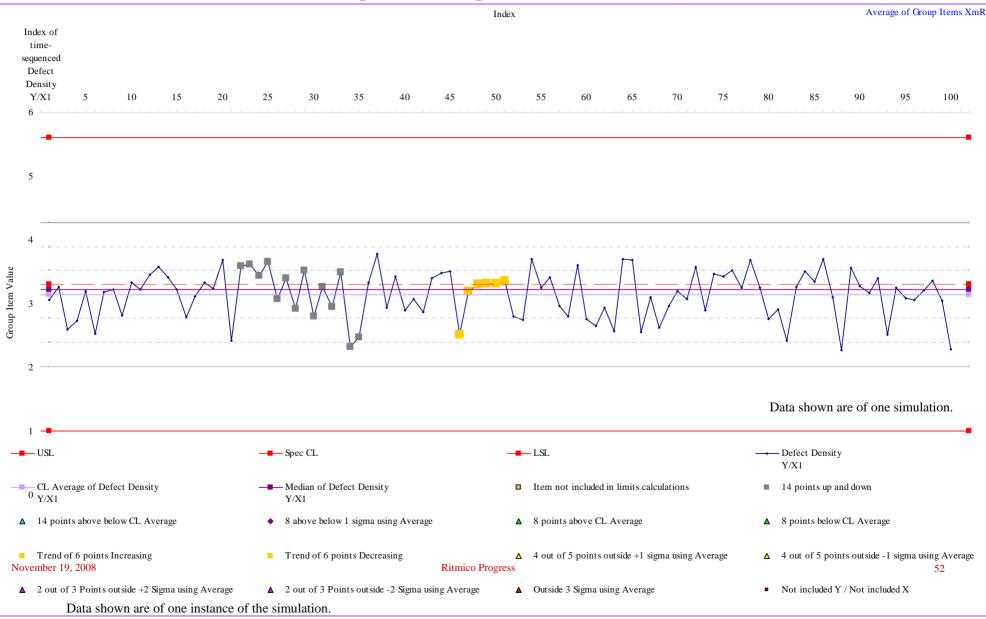
Optimum range of X₁: Code Size

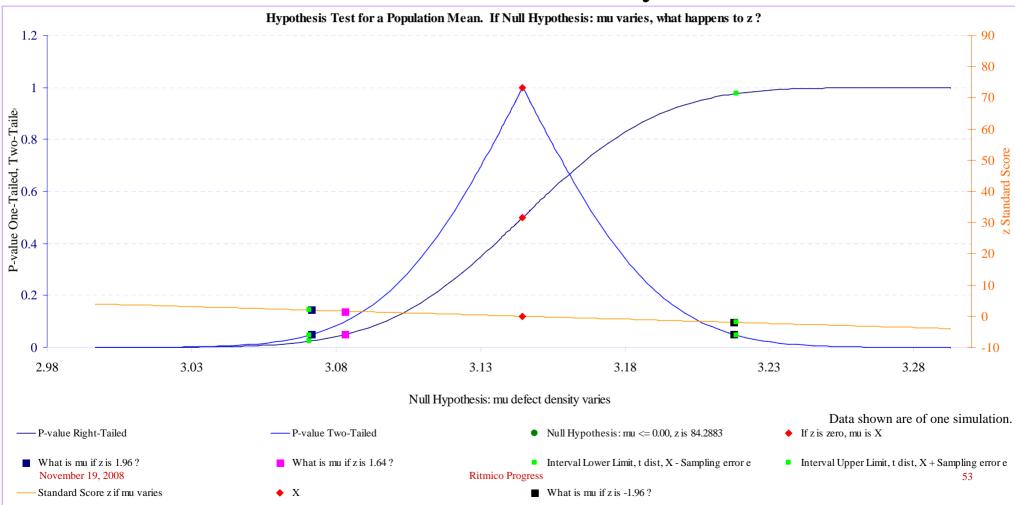
- Plot Y against X₁: Code Size
- Code Size is the most important controllable factor
- Keep all file sizes <= 12 KLoc during planning of the modules' WBS (work breakdown structure)
 - The higher the gradient, usually the higher the productivity


Optimum range of X₁: Code Size

Simulation of the following:

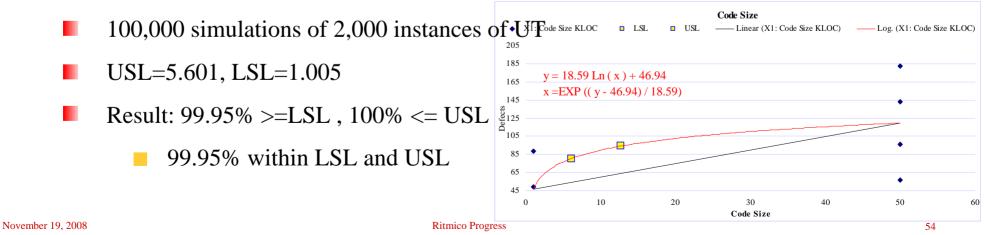
- I X₁ ranges from 6 to 12 KLOC of Module Size
- $I X_2 \text{ ranges from } >= 1 \text{ Test Cases}$
 - (Max test cases simulated was up to 428, correlated with file size)
- (X_3)^2 ranges from >=1 Testing Time
 - (Max testing time simulated was up to 3245 hrs², correlated with # test cases)
 - $3245 \text{ hrs}^2 = (57 \text{ hrs})^2$
- 100,000 simulations of 2,000 instances of UT
- USL=5.601, LSL=1.005
- Result: 99.95% >=LSL , 100% <= USL</p>
 - 99.95% within LSL and USL

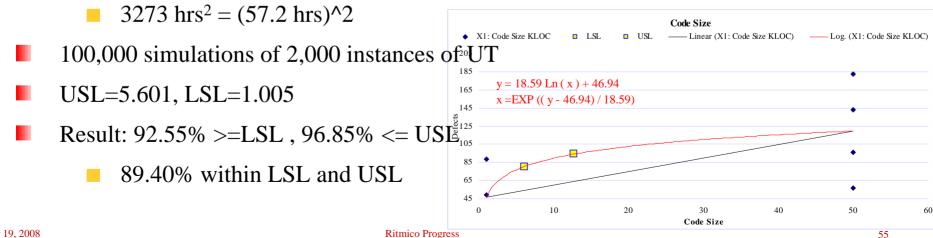

November 19, 2008


November 19, 2008

Ritmico Progress

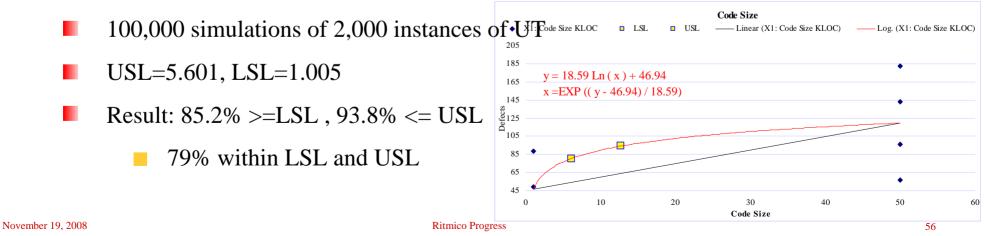
Data shown are of one instance of the simulation.


■ 95% confidence level of defect density: 3.07 – 3.22

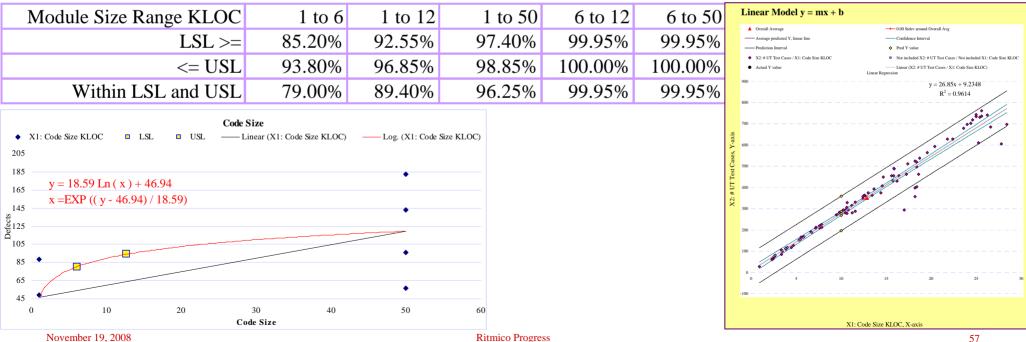

Data shown are of one instance of the simulation.

Simulation of the following:

- I X₁ ranges from 6 to 50 KLOC of Module Size
- X_2 ranges from >= 1 Test Cases
 - (Max test cases simulated was up to 1444, correlated with file size)
- (X_3)^2 ranges from >=1 Testing Time
 - (Max testing time simulated was up to 11418 hrs², correlated with # test cases)
 - $11418 \text{ hrs}^2 = (106 \text{ hrs})^2$



- Simulation of the following:
 - In reality, there will be module Module Size of < 6
 - X₁ ranges from 1 to 12 KLOC of Module Size
 - X_2 ranges from ≥ 1 Test Cases
 - (Max test cases simulated was up to 428, correlated with file size)
 - $(X_3)^2$ ranges from >=1 Testing Time
 - (Max testing time simulated was up to 3273 hrs², correlated with # test cases)



Simulation of the following:

- X_1 ranges from 1 to 6 KLOC of Module Size
- X_2 ranges from >= 1 Test Cases
 - (Max test cases simulated was up to 264, correlated with file size)
- (X_3)^2 ranges from >=1 Testing Time
 - (Max testing time simulated was up to 2725 hrs², correlated with # test cases)
 - **2725 hrs² = (52.2 hrs)^2**

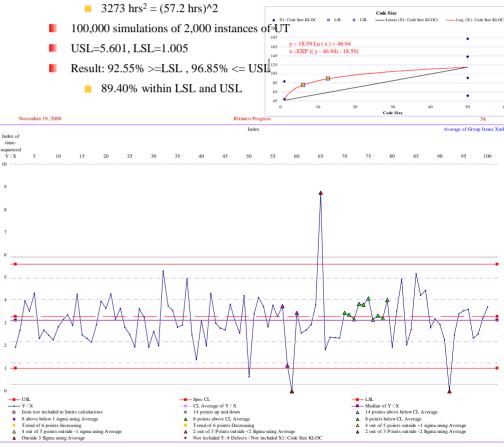
- In the simulation of module size between 1 to 6, reasons for having many instances below LSL:
 - # of test cases was not enough or there were zero defects simulated.

Final Decision

- X_1 ranges from 1 to 12 KLOC of Module Size
 - Only a guideline, not an enforcement
 - 6 KLOC was too stringent an upper limit, and
 - There will also be modules requiring < 6 KLOC, but
 - When breaking the modules into sub modules, aim for sub module size >= 6, E.g.:
 - Two sub modules, each 6 KLoc is better than (2, 10) or (3, 3, 3, 3)
 - Need practitioners to agree this makes sense
- X_2 Test Cases:
 - Ensure there is enough, use the PPM for guidance
- (X_3)^2 Testing Time:
 - Likewise, use the PPM for guidance

Final Decision

Simulated PPB ctrl limits:


- UCL = 5.92 defect density
- LCL = 0.31

PPB'

- UCL = 5.601
- LCL = 1.005
- Need to also control:
 - # Test Cases

Monte Carlo with X_3 as $(X_3)^2$ with Optimum Ranges

- Simulation of the following:
 - In reality, there will be module Module Size of < 6
 - X₁ ranges from 1 to 12 KLOC of Module Size
 - $I X_2 \text{ ranges from } >= 1 \text{ Test Cases}$
 - (Max test cases simulated was up to 428, correlated with file size)
 - (X_3)^2 ranges from >=1 Testing Time
 - (Max testing time simulated was up to 3273 hrs², correlated with # test cases)

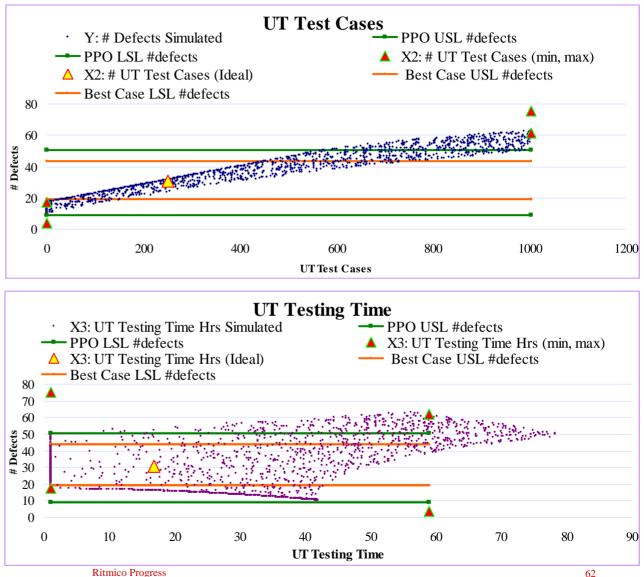
Final Decision

- Module size from 1 to 12 KLoc
- Test Cases variation : Calculated + 50
- Testing time variation : Calculated + 10 hrs
- Simulated PPB ctrl limits:
 - UCL = 4.86 defect density
 - LCL = 2.12

PPB'

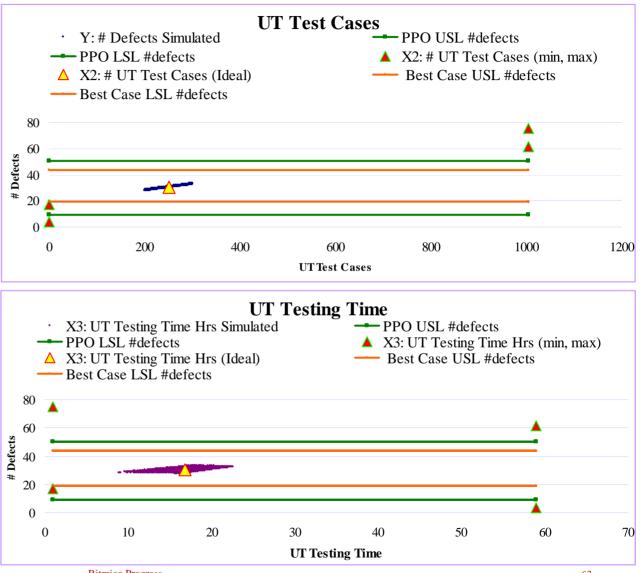
UCL = 5.601

LCL = 1.005

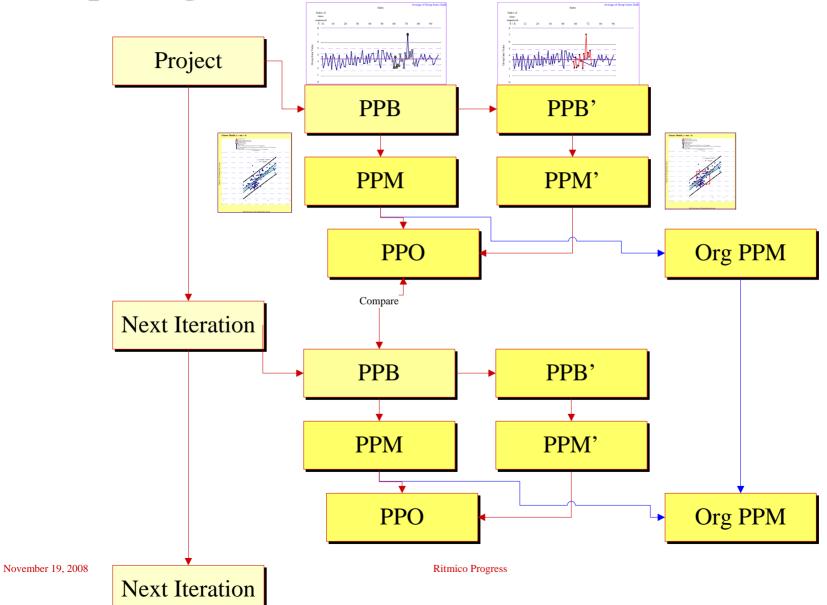

E.g. Module Size 9 KLoc

Size of module (KLoc): 9 50.409 Expected defects to be found 5.601 **QPPO USL** according to PPO and size of 1.005 9.045 module **QPPO LSL** Y: # X₁: Code X₂: # UT X₃: UT X_3 : UT Defects Size Test Cases Testing Testing Time Hrs KLOC Time (Ideal) Hrs^2 (Ideal) (Ideal) 30.63356 250.8809 283.2419 16.82979 9 # UT Test Cases = (26.85* module code size + 9.23)UT Testing Time² =(0.07* Test Cases - 0.79)^2

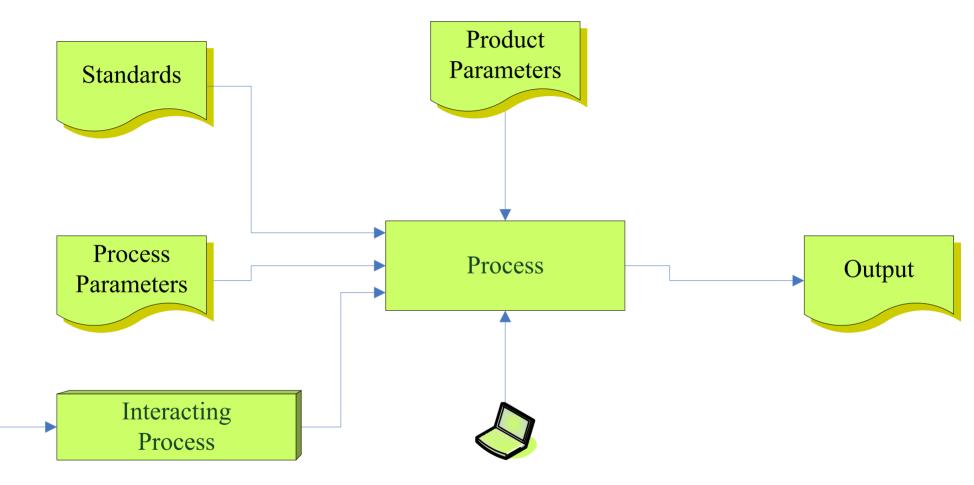
$y = m_1 x_1 + m_2 x_2 + m_3 x_3 + b$		m_1	m ₂	m ₃	b
Coefficients		1.912166	0.057942	-0.00393	0
	Y: #	X ₁ : Code	X ₂ : # UT	X ₃ : UT	X ₃ : UT
	Defects	Size	Test Cases	Testing	Testing
		KLOC	(min,	Time	Time Hrs
			max)	Hrs^2	(min,
				(min,	max)
				max)	
	17.26351	9	1	1	1
	3.638934	9	1	3469.713	58.90427
	75.35195	9	1003.524	1	1
	61.72737	9	1003.524	3469.713	58.90427

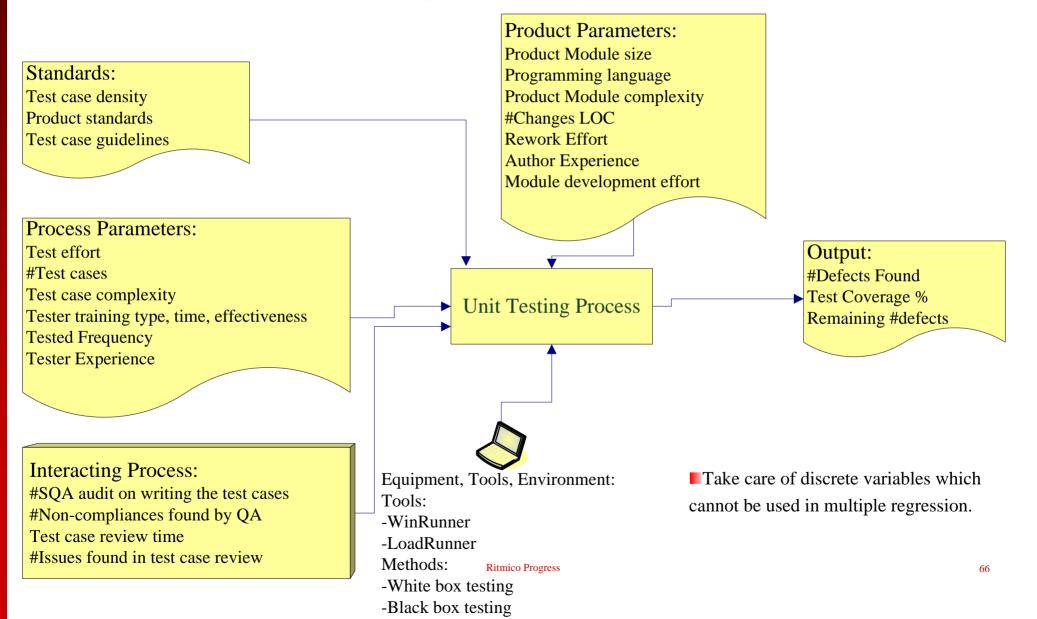

E.g. Module Size 9 KLoc

- 81.95% USL LSL
- Module code size
 - 9 KLoc
- UT Test Cases
 - 1 1003
- UT Testing Time
 - 1 81 hrs
- PPO is too wide
 - Common problems



E.g. Module Size 9 KLoc


- 100% USL LSL
- Module code size
 - 9 KLoc
- UT Test Cases
 - 200 300
- UT Testing Time
 - 9 22 hrs


Composing the Defined Process

Process Performance parameters Considerations

Unit Testing Process possible parameters

UT Testing Process

Selected parameters:

- Y = #Test Defects Found
- $\mathbf{I} \quad \mathbf{X}_1 = \text{Test Effort controllable}$
- X_2 = #Test Cases controllable during planning
- X_3 = Tested Frequency (# times tested) controllable
- X_4 = Product module size controllable during planning
- X_5 = Development Effort need more consideration

Ritmico Progress, Rayney Wong

Rayney@RitmicoProgress.com

