Air Armament Center

War-Winning Capabilities...On Time, On Cost

Lessons Learned Doing Systems Engineering Assessments on the Government

lan Talbot AAC/EN

ian.talbot@eglin.af.mil

https://afkm.wpafb.af.mil/EglinSE

U.S. AIR FORCE

Product Portfolio

B-2 Shelter

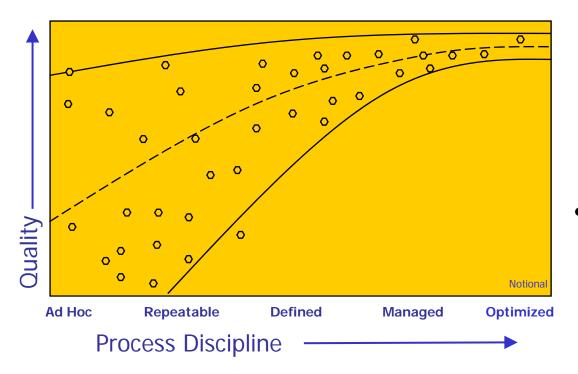
- Air Armament Center Systems Engineering Assessments
 - Why
 - How
 - What we Learned
 - Futures

Today is a Discussion not a Lecture – Please Stop me Anytime!

Direction & Goals

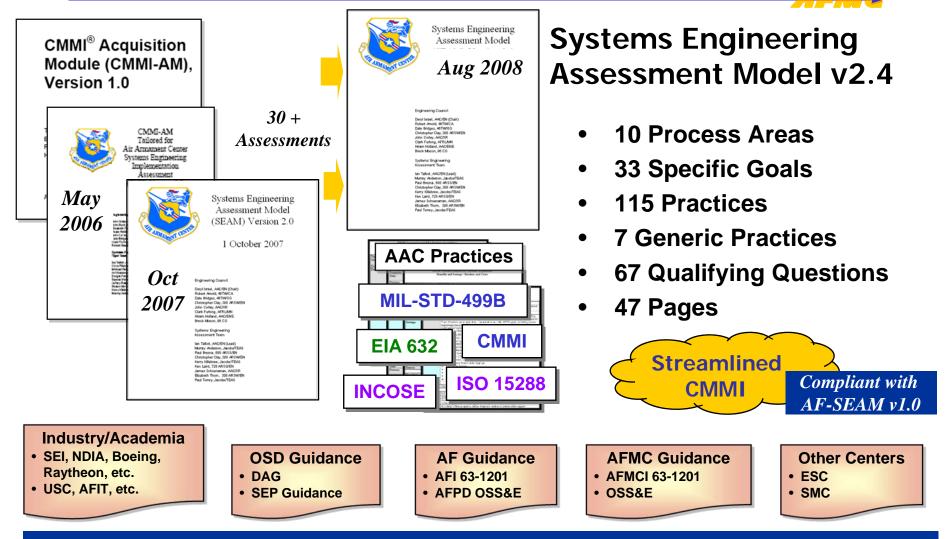
- In 2006, EN Tasked to:
 - Perform a Center-wide SE Assessment
 - Found Out
 Where We Are?
 - Baseline Enterprise
 Process Improvement

- Goals
 - Improve Program
 Performance & Reduce
 Technical Risk
 - Ensure a Consistent Understanding of SE
 - Ensure Core SE Processes are in Place and Being Practiced
 - Identify Opportunities for Continuous Improvement
 - Clarify Roles and Responsibilities
 - Institutionalize "Best Practices"


- Define Systems Engineering Best Practices
- Benchmark Systems Engineering Implementation
- Establish a Baseline for Continuous Improvement
 Begin Changing the Culture to Kaizen
- Phased Approach 3 Phases

 The Quality of a System or Product is Highly Influenced by the Quality of the Process Used to Develop and Maintain It

CMMI Performance Results Summary		
	Median	Number of
	Improvement	Data Points
Cost	34%	29
Schedule	50%	22
Design all starting its a	0484	
Productivity	61%	20
Quality	48%	34
Customer		
Satisfaction	14%	7
ROI	4.0 : 1	22
		CMU/SEI-2006-TR-004


- Process Discipline Leads to:
 - Predictable Program Performance
 - Ability to Deliver on our Commitments

Institutionalized Process Driven SE » Lower Risk Technical Programs

AAC SEA Model Development

AAC Assessment Model Based on International, Industry and DoD Best Practices

080806 SEA Lessons Learned; Talbot

Current Process Areas

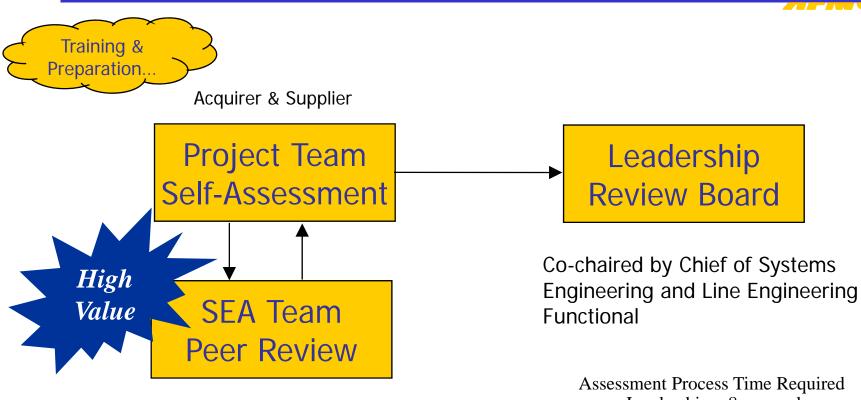
- Technical Process Areas
 - Requirements
 - Design
 - Manufacturing
 - Verification & Validation
 - Fielding & Sustainment
- Project Process Areas
 - Project Planning
 - Risk Management
 - Configuration Management
 - Decision Analysis
 - Technical Assessment

- Introduction
- Goal
 - Practices
 - Grey Matter
 - Question(s)
- Goal…
 - Generic Practices
- Question(s)

Criteria for Methodology

- Objective Assessment
- Provide insight into Government, Prime Contractors and Subs Process & Capability
- Facilitate Self Assessment & Continuous Improvement
 - Lean & Six Sigma
- Consistent Near and Far Term Approach

- Relevant to PM/PEO
- Simple
- Understandable
- Graphical
- Support Multi-level Measurement & Reporting
 - Program, Group, Wing, Enterprise

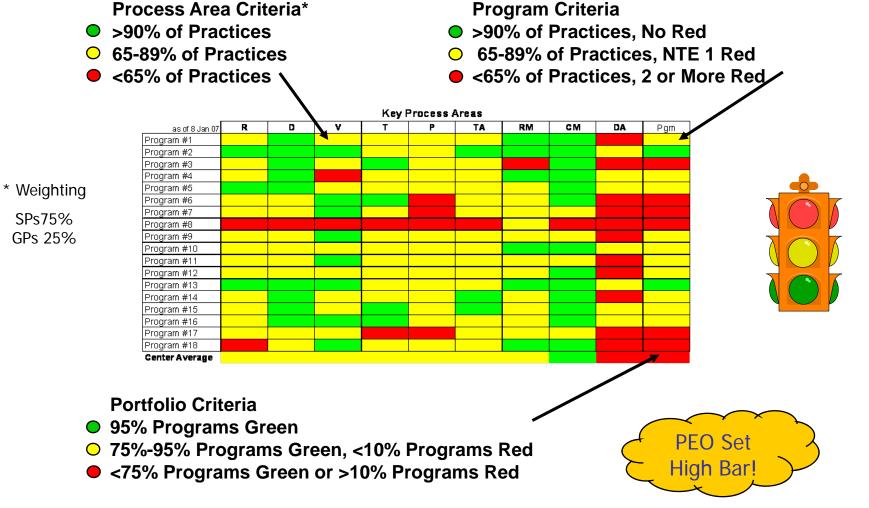


SEA Methodology

Team Chaired by Senior Systems Engineer Members from Across Multiple Programs sessment Process Time Required Leadership – 8 person hrs Project Team –60-100 person hrs SEA Team – <50 person hrs

SEA Assess What Practices are Implemented NOT How Well Executed Future: Begin to Shift Focus to "How To" and Quality of SE Implementation

Products Provided to Program



- Training & Self
 Assessment
- Peer Review
 Collaboration &
 Feedback

- Validated Assessment
- Summary Memorandum
 - Findings & SE Improvement Recommendations

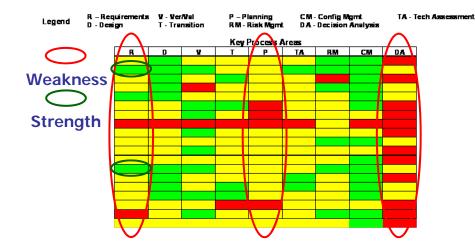
Benchmarking the Enterprise

- Personnel Resources are Stretched and Need SE Training & Experience
- Process and Procedures are Needed to Ensure More Repeatable/Consistent Application of SE
- Product Line Specific Guidebook Capturing Eglin Experience in Weapons Desired

Spiral 1

The Good

- Requirements Control & Verification Working Group
- Iterative Requirements & Design Trade-off Working Group
- Contract Incentives for Reducing Cost and Increasing Reliability
- Full Trust
 Integrated Teaming


- Concurrent Engineering to Ensure Successful Transition to Production
- Integrated & Overarching Risk Management Strategy

"Following MIL-STDs was Better than Having No Process at All"

The Bad

- Areas that Need Work
 - Requirements
 - Decision Analysis
 - Planning
 - Process Integration Particularly Risk Management
- Model Expansion Needed
 - Manufacturing (Transition to Production)
 - Sustainment

Added in Version 2.0

Decision Analysis	RED
Planning	YELLOW
Requirements	
Risk Management	
Verification & Validation	
Transition	
Technical Assessment	
Design	
Configuration Management	GREEN

- Design Mission Reference Profiles (RG1P2)
 - Comprehensive Definition of Product Characteristics in Engineering Terms and Documentation of the Interaction of the Product with the Environment, Other Systems, and Operational Users [Willoughby].

Do we understand the edges of the technical performance envelope?

- Validate Requirements (RG2P3)
 - Ensure the Evolving Product will Perform as Intended in the Operational Environment [CMMI].

Do the derived requirements accurately and completely represent what is needed? and no more... How were they validated?

Reference: AAC SEAM v2.4

Some Solutions

- Develop Valid Mission Reference
 Profiles to Support Design
 - Validate Concepts of Employment

- Obtain Accredited Simulation Capability Including Carriage, Separation, Fly-out
 - Engage Independent Subject Matter Experts
 - Discover & Examine Stressing Conditions
- Anchor the Models with Data
 - Test Prototypes in Wind Tunnel
 - Test Instrumented Flight Vehicles in Carriage, Separation and Fly-out Modes
- Test Sample Conditions of All Configurations With Representative Hardware Early and Allow Schedule for Issue Resolution

Vibration Acoustics Temperature Electromagnetic Aerodynamic

- Establish Operational, Suitability and Effectiveness Baselines (SG4P1)
 - Conduct Health Monitoring and Verification to Ensure Fielded Product Matches Baseline Performance [AFMCI]

How do we assure the products continued safety & performance?

• Perform Audits to Maintain Integrity (CMG3P2)

 Ensure Processes for Maintaining the Integrity of the Fielded Configuration are Effective [CMMI].

How do you know if Time Critical Technical Orders are compete?

Reference: AAC SEAM v2.4

- In 2006, USAF Material Command Engineering Council Action Item to:
 - Provide an USAF-wide SE Assessment Model
 - Involve USAF Centers (product and logistics)
 - Leverage current CMMI®-based models in use at AF Centers
 - Baseline Process Capability & Usage
- AF Systems Engineering Assessment Model:
 - A single AF-wide tool which can be used for the assessment and improvement of systems engineering processes in a program/project.

Version 1.0 Completed August 2008

AF-SEAM SP Roll-Up

Specific Practice Assessment Results XXX Center 7 6 5 Number of Programs 4 3 2 1 0 СМ DA Μ PP R RM S тмс V D

Process Area

AF-SEAM GP Roll-Up

Generic Practice Assessment Results XXX Center 7 6 5 Number of Programs 4 3 2 1 0 GP1 GP2 GP3 GP4 GP5 GP6 GP7

Practice Area

Key Process Area: Manufacturing or TMC

Goal: – Product and process quality is assessed and improved.

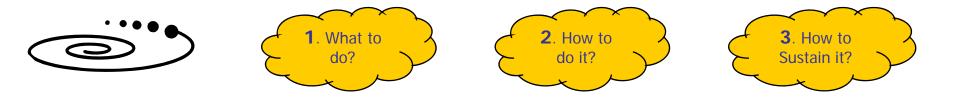
Practice:

Stratified Criteria

Notional

P1 Establish and maintain a quality management system.

- 5: The developer and major suppliers have an ISO 9000/AS9100 certified operation with recent AS9101 audit at relevant locations.
- 4: The developer has an ISO 9000/AS9100 certified operation with recent AS9101 audit at relevant locations.
- 3: The developer is meeting the intent of ISO 9000/AS9100 with a recent independent quality audit at relevant locations.
- 2: The developer has an effective quality management system that includes suppliers with no recent independent audit.
- 1: The developer has not demonstrated an effective quality management system.


Rungs Facilitate 1) Self Assessment, 2) Training and 3) Steps for Improvement

Summary

- Goal is to Continue to Improve Program Performance
 - Too Many Examples of Program Performance/ Issues Being Tracked Back to Lack of Systems Engineering Discipline
- Long Term Goal Revitalizing Systems Engineering
 - Need to Follow "Best Practices"
 - Need to Do them "Well"
 - Need to Ensure that Our Program Teams Have What they Need
 - Qualified People, Process Discipline, Tools/Technology

Where there is no standard there can be no Kaizen – Taiichi Ohno

Kai-zen

The Art of Continuous Improvement

Kai-zen must operate with three principles in place: process and results, systemic thinking, and non-blaming (because blaming is wasteful).