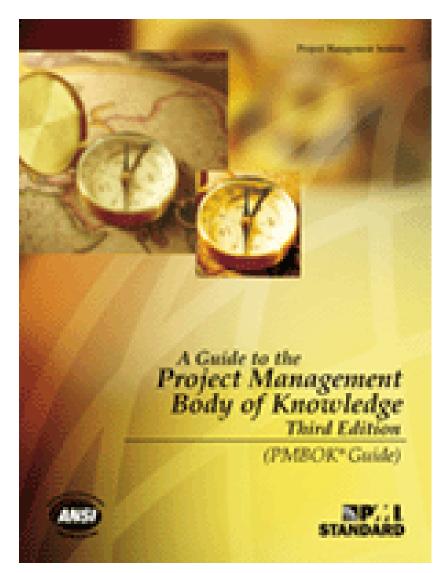
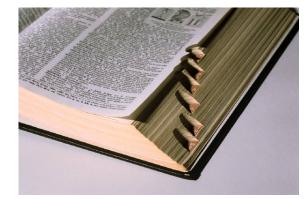

estimate

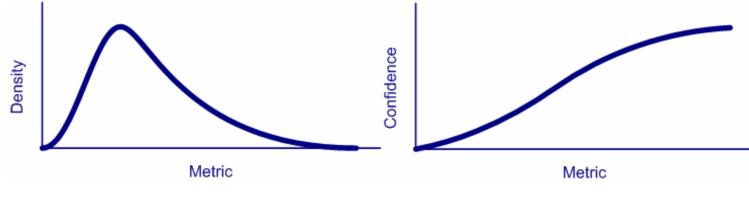
estimate • analyze • plan • control

CMMI's Role in Reducing Total Cost of Ownership: Measuring and Managing New and Legacy Software



Project Management Defined

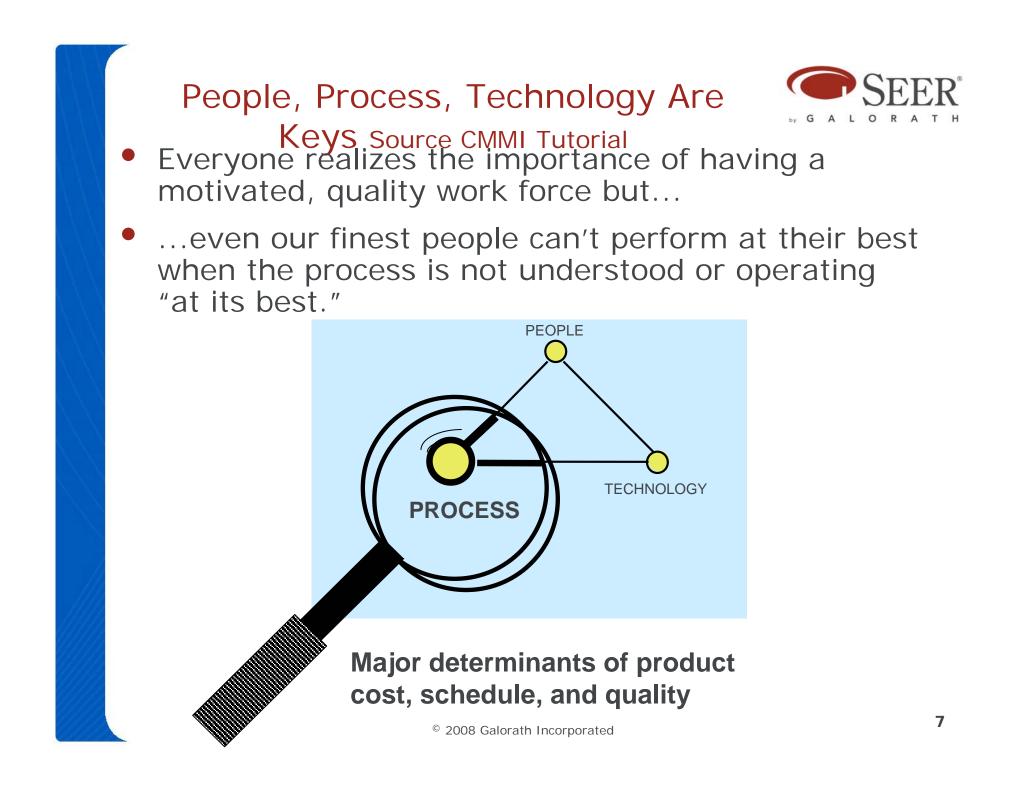

 The application of knowledge, skills, tools, and techniques to project activities in order to meet or exceed stakeholder needs and expectations from a project


An Estimate Defined

- An <u>estimate</u> is the most knowledgeable statement you can make <u>at a particular point in time</u> regarding:
 - Effort / Cost
 - Schedule
 - Staffing
 - Risk
 - Reliability

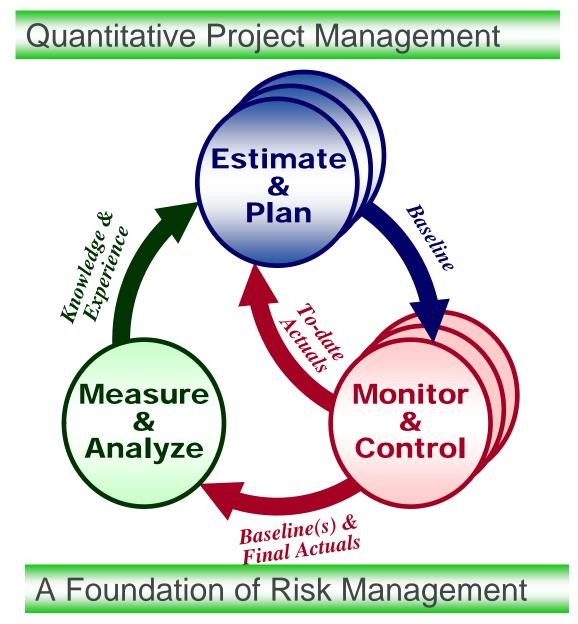
- A well formed estimate is a distribution
- A well structured plan defines probability

Poor Estimates Effects on Projects

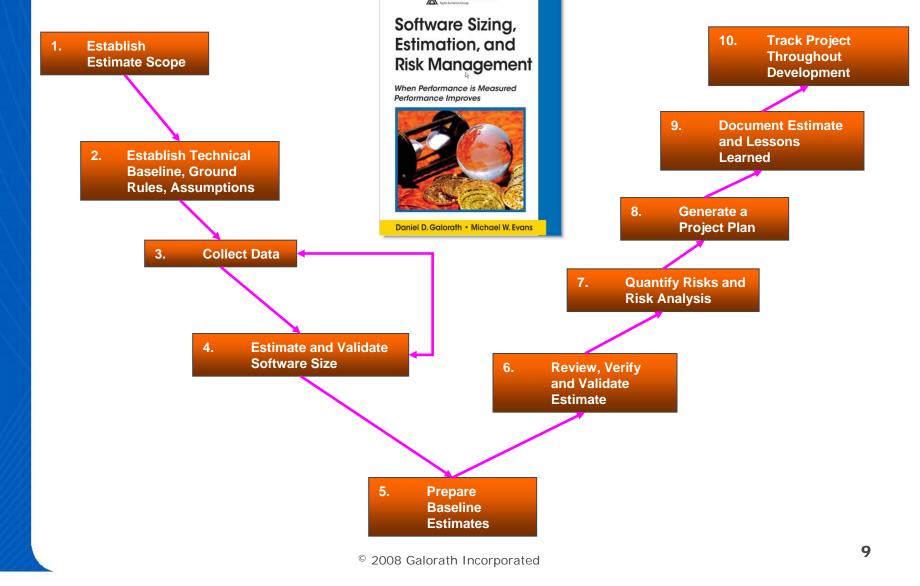


- Inaccurate estimates can reduce project success:
 - Poor implementations
 - Critical processes don't scale
 - Emergency staffing
 - Cost overruns caused by underestimating project needs
- Scope creep from lack of well defined objectives, requirements, & specifications
 - Forever changing project goals
 - Frustration
 - Customer dissatisfaction
 - Cost overruns and missed schedules
 - Project Failures
- Poor estimates & plans are root cause of program risk

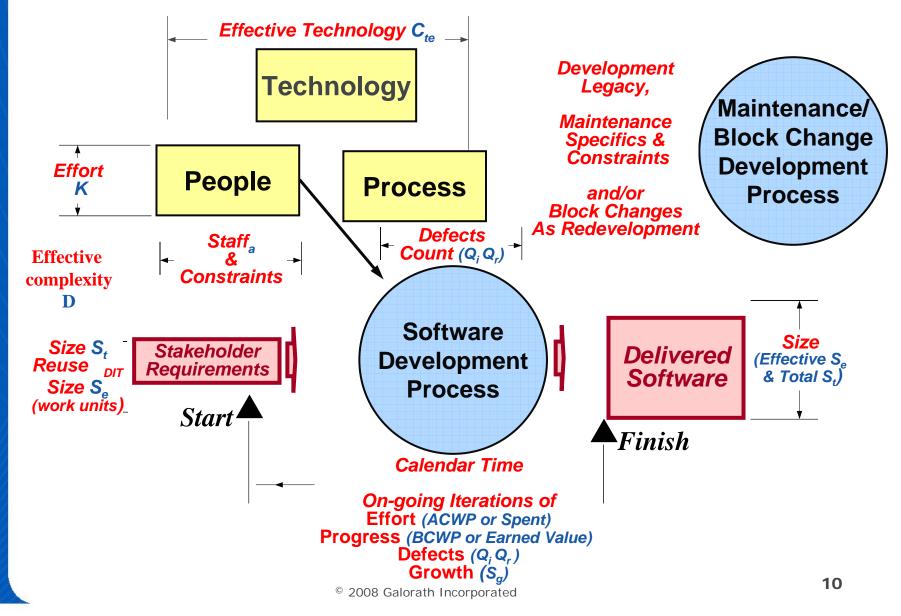
However, the most important business decisions about a software project are made at the time of *minimum knowledge* and *maximum uncertainty*



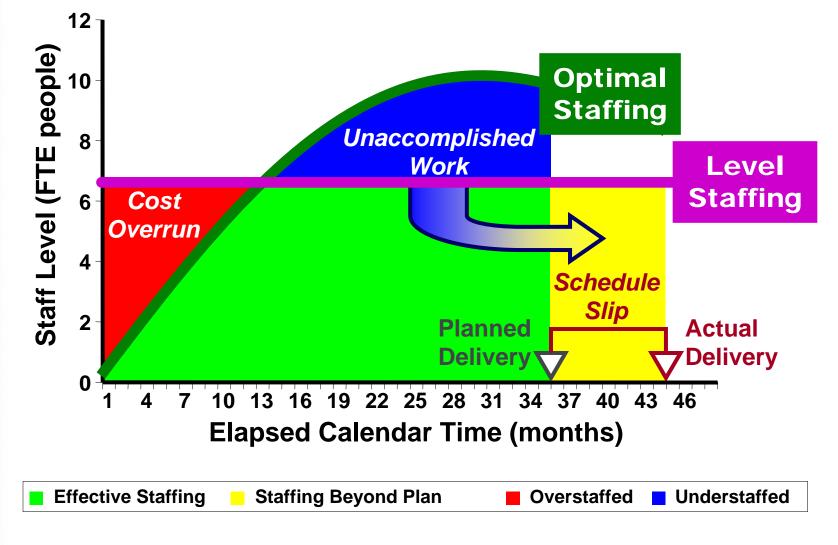
Development, CMMI & Estimation Process



SEER: Software Analysis Tools A Complete Software Project Management Solution



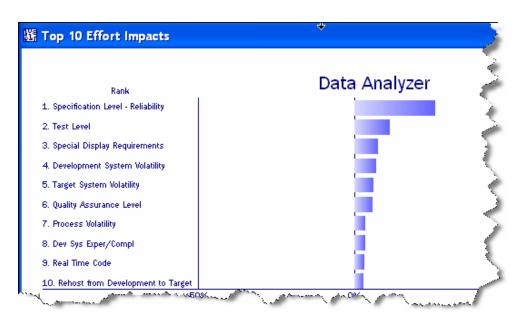
10 Step Software Estimation Process: Consistent Processes Help Reliable Estimates


Software Estimation Basic Model & Associated Metrics

Avoid "Death Marches" and Failed Projects By Applying "Brooks Law"

Generate the Estimate

 Using your chosen methodology and tool, do a first run


• Never report preliminary results!

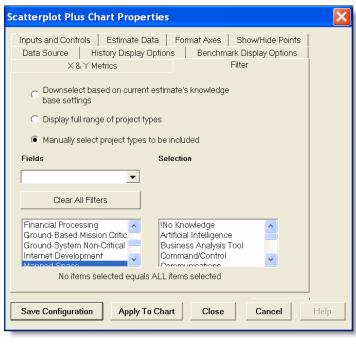
Focus on the inputs

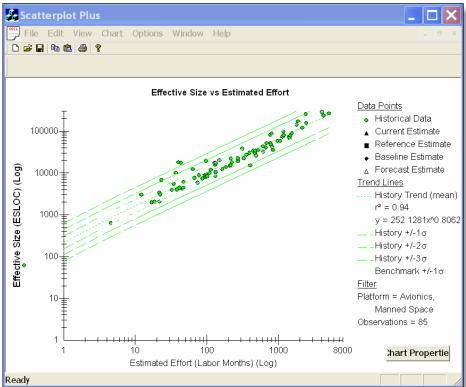
- Verify completeness
- Verify accuracy

Focus on the outputs

- Sanity check for reasonableness, completeness
- What's driving the estimate?
- Use "fresh eyes" to review
 - Ask a colleague for help
 - Set aside overnight

Compare Parametrics With Metrics and Sanity Checks

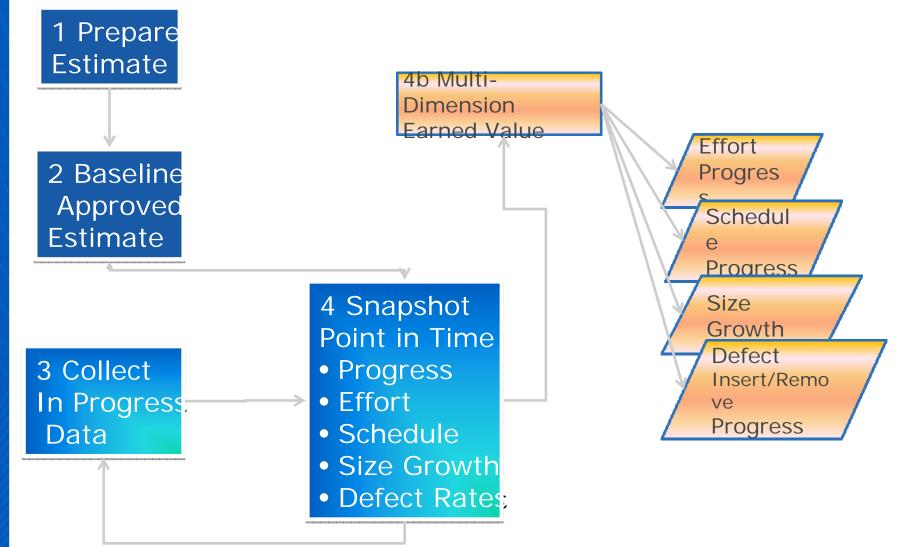



•Works with common repository

•Shows actual data, ranges, and correlations

•Plots estimates and contrasts with data points

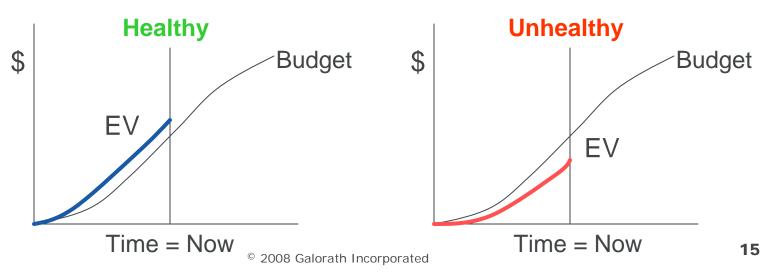
Plots actual data and / or trends



"In God we trust, all others bring data." - W. Edwards Deming

© 2008 Galorath Incorporated

Process For Combining Estimation, Planning & Control, Measurement & Analysis



Use Earned Value TO Quantify Progress Versus Effort

- Progress Versus Effort The main concern of EVM is what has been accomplished in a given time and budget, versus what was planned for the same time and budget
 - A project is generally deemed healthy if what has been accomplished is what was planned, or more
 - A project is deemed unhealthy if accomplishment lags expectations
- Definition: Earned value = budgeted value for the work accomplished (what you got for what it cost you)

Defects and Growth Impact Software Process

Time

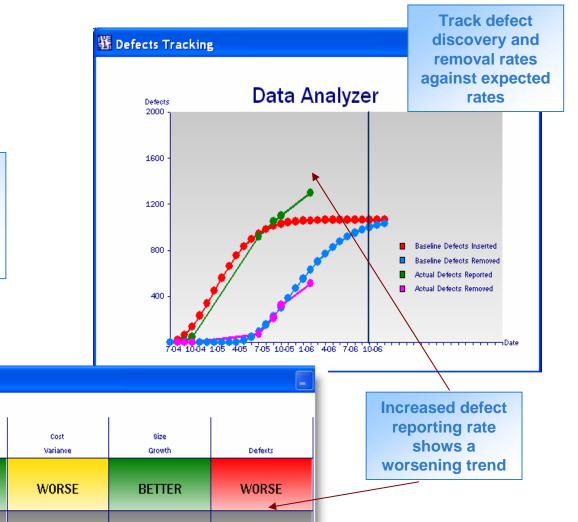
Variance

BETTER

Heath and Status Indicator shows status and trends from the previous snapshot

Thresholds are user definable

Schedule

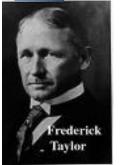

Variance

BETTER

2

駢 Health & Status Indicator

Analyst Support Sy...



Measurement During Development & Maintenance

Some Measurement Heroes

- Frederick Taylor: The Principals of Scientific Management 1901 "Let data and facts do the talking"
- W. Edwards Demming: "In God We Trust... All Others Bring Data"
- Frederick Brooks: "There is an incremental person when added to a software project that makes it take longer"
- Ed Yourdon: "Avoiding Death Marches in Software Projects"
- Steven Covey: "Sharpen the Saw" Focus on improvement
- Eli Goldratt: Improvements should increase profit Effectiveness

"In God we trust, all others bring data." - W. Edwards Deming

© 2008 Galorath

What To Measure: Multiplicity of Metrics

- Obvious: Status / Trend Metrics: e.g. productivity, defects removal rate, cost, schedule
- 2. Most important for improvement: Effectiveness (5 max)
 - "What we are doing that we should not do"
 e.g. number of delivered critical defects
 - "What we are not doing that we should do" e.g. number of defects that got past inspections
 - These metrics may change over time as we improve
 19

Core Metric: Value Provided By Software

- Concept: Spend where you obtain the most value
 - Value = savings to company or additional revenue due to the software
- Software Fails to add value much too often
 - Users enamored with concept
 - Concept deployed
 - Little to no value contributed to company...
 - Many reasons... often no changes in business rules
- MRP is a classic example of software hyped but which did not provide value

Many Organizations May Not Be Mature Enough To Consider Value From the Software Team

Theory of Constraints Questions Regarding Value (Source Goldratt)

- 1. What is the main power of the technology?
- 2. What limitation does it diminish?
- **3**. What rules helped us to accommodate the limitation?
- 4. What rules should we use now?

Measurement Job Not Over When Development Is Complete Maintenance GQM (Adapted from Mitre)

Goal	Question	Metric(s)
Maximize Customer Satisfaction	How many problems affect the customer?	 Current Change Backlog Software Reliability
Minimize cost	How much does a software maintenance delivery cost?	
	How are costs allocated	Cost per activity
	What kinds of changes are being made?	Number of changes by type
	How much effort is expended per change	Staff hours expended by change /type
Minimize Schedule	How difficult is the delivery?	Complexity Assessment Software Maintainability
		Computer resource Utilization
	Are we meeting delivery schedules? ^{© 2008 Galorath Incorporated}	Percentage of On Hime Deliveries

Example Maintenance Metrics

- Defects Inserted per correction
- Defects removed per unit time
- Productivity for block changes
- Maintainability
- Mean time to find the next k faults
- Maintenance backlog
- Increases / decrease on maintenance backlog
- Number of trouble reports opened and closed

More Example Maintenance Metrics

- Mean time until problem closed
- Defects during warranty period
- Mean time to resolution
- Defects by type and severity
- Time to respond to customer reported defects
- Mccabe & Halstead complexity metrics

Software Maturity Index (Example of Metric from IEEE 982 Standard Dictionary of Measures to Produce Reliable Software)

- M = number of modules in current version
- A = number of added modules in current version
- C = number of changed modules in current version
- D = number of deleted modules in current version compared to the previous version

SMI = (M - (A + C + D)) / M

• when SMI approaches 1.0 the product is stable

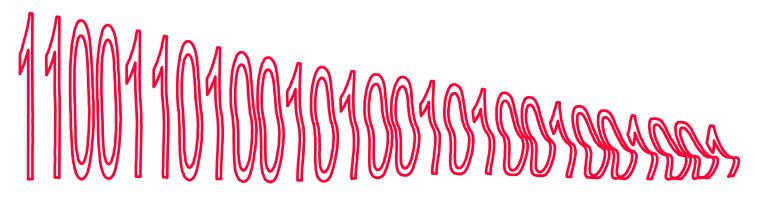
Example Effectiveness metrics for Maintenance

- Number of new defects created by fixes
- Number of defect corrections that were not correct
- Number of defects not repaired in promised time (Delinquent)
- Defect Seepage.. (Customer reported defects during predelivery testing)

Identify the metrics that Wold R organization needs

Product Age / Technology Metrics

- Becomes increasingly difficult to maintain older technology
- Would you recommend a student study COBOL, Ada or PASCAL
- People become less available
- Tools an practices become obsolete



Maintenance & Total Ownership Costs

Maintenance Defined

- Dictionary: "The work of keeping something in proper order"
- Software maintenance is different from hardware maintenance because:
 - Software doesn't physically wear out, but...
 - Software often gets less useful with age and...
 - It may be delivered with undiscovered flaws
- Software maintenance is: "The process of modifying existing operational software while leaving its primary functions intact."

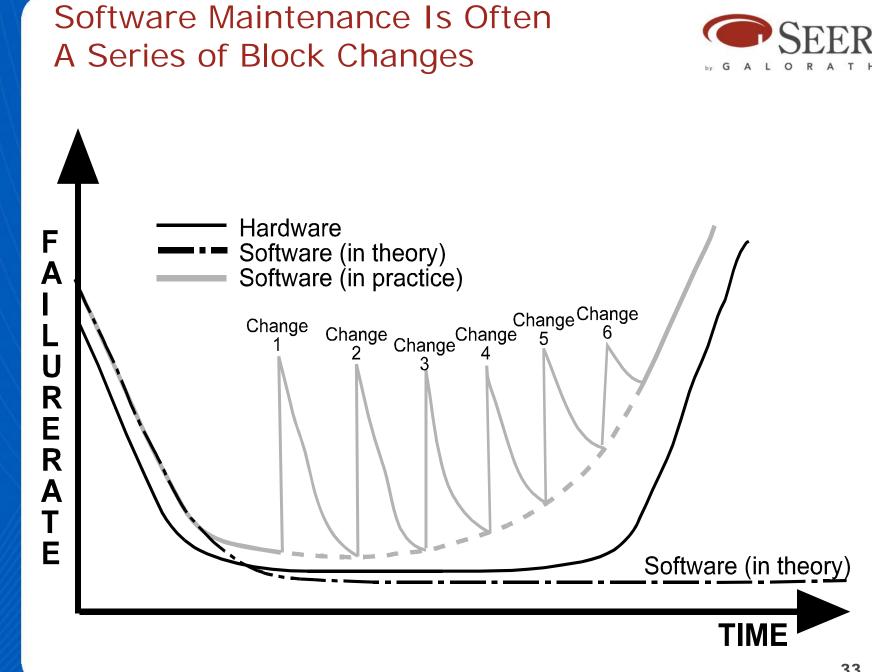
Development Quality Impacts Maintenance http://www.bcs.org/server.php?show=ConWebDoc.3063

• IEEE Std 1919-1993: Software maintenance defines maintenance as:

Modification of a software product after delivery to correct faults, to improve performance or other attributes, or to adapt the product to a modified environment

- States that maintenance starts after delivery
- Largest costs of software production occur after the 'development phase' is complete
 - Maintenance up to 75 per cent of the total ownership cost.
- Maintenance costs generally not result of poor requirements or design
- Even if "right the first time" change is inevitable:
 - Political decisions (e.g. introduction of a new tax).
 - Hardware related changes.
 - Operating system upgrades over time.
 - Competition new features to be added.
 - System almost instantly complying to outdated requirements
- Construction may not affect function, but greatly affects future maintainability
- Maintainability goals during development can significantly reduce total ownership costs

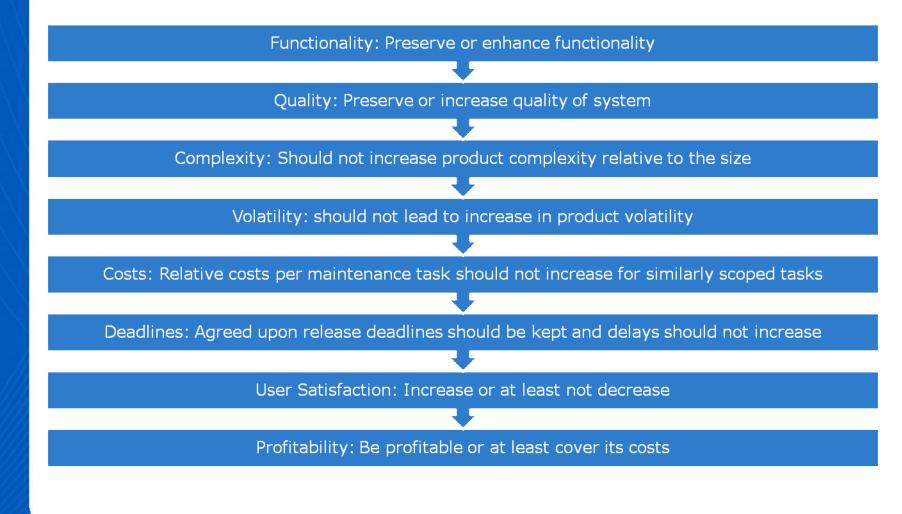
Why Total Lifecycle Measurement matters



- NIST Study
 - Software defects cost U.S. almost \$60 billion annually
 - 80% of development costs software developers identifying and correcting defects
- CHAOS Report (Standish Group)
 - Canceled projects cost \$55 billion dollars

Maintenance Dissected

- Maintenance typically 50% + of the total software workload:
 - Highly dependent on maintenance rigor & operational "life expectancy"
 - Reducing maintenance costs can reduce life cycle costs significantly
- Generally includes sustaining engineering & new function development:
 - Corrective changes (fixing bugs)
 - Adapting to new requirements (OS upgrade, new processor)
 - Perfecting or improving existing functions (improve speed, performance)
 - Enhancing application with (minor) new functions (new feature)
- For every new software product we develop, we get one more to maintain -- for ?? years



Software Maintenance Goals, Questions, Metrics Adapted from Mitre 1997

Goal	Question	Metric(s)
Maximize Customer	How many problems affect the customer?	1. Current Change Backlog
Satisfaction		2. Software Reliability
Minimize cost	How much does a software maintenance delivery cost?	
	How are costs allocated	Cost per activity
	What kinds of changes are being made?	Number of changes by type
	How much effort is expended per change	Staff hours expended by change /type
Minimize Schedule	How difficult is the delivery?	Complexity Assessment
		Software Maintainability
		Computer resource Utilization
	Are we meeting delivery schedules?	Percentage of On-Time Deliveries

Software Maintenance Critical Success Factors (Source IEEE)

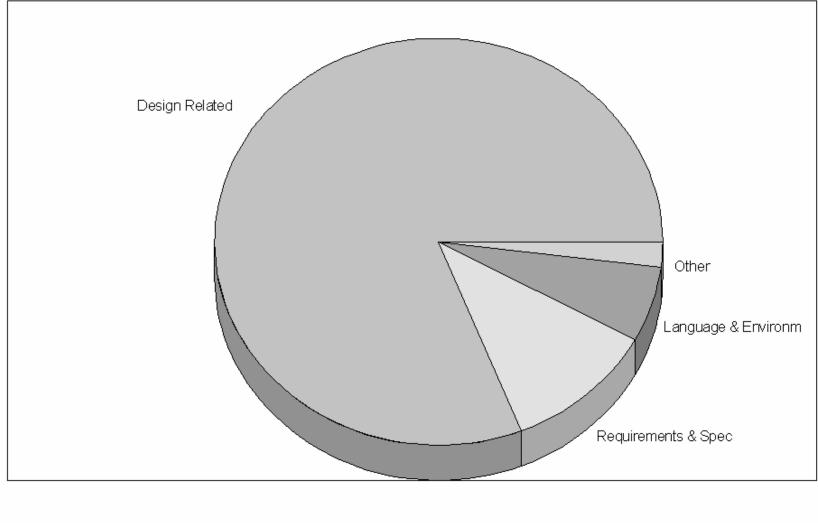
© 2008 Galorath Incorporated

Why Maintenance Is Hard

- May not have had maintenance as a goal
- System may not have been fully tested
- Documentation may be inadequate
- Maintenance staff may be inexperienced
- The tendency to produce quick & dirty fixes
- Process or language experience may have left a mess
- The "but I only changed 1 line syndrome"

Why Software Maintenance Costing Is Harder

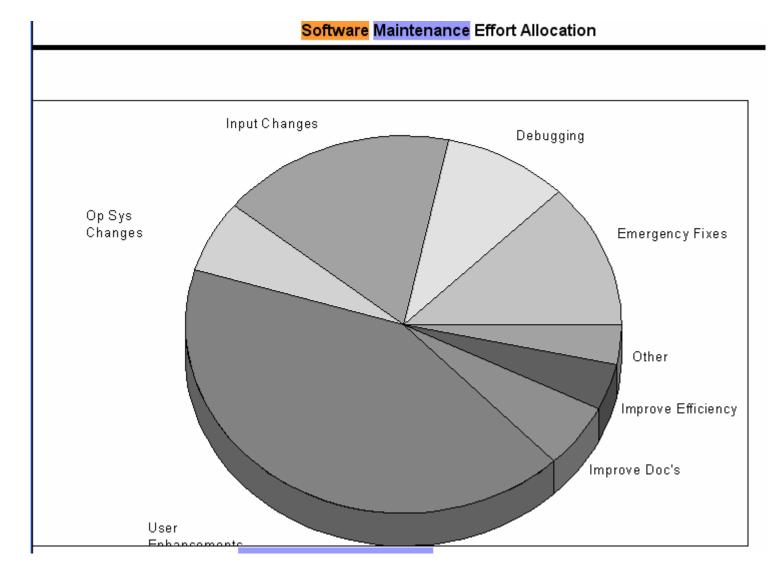
•Software Maintenance treated as A Level Of Effort Activity


•This Means You Can Maintain Software With A Larger Or Smaller Staff Depending On Your Desires / Budget

Maintaining A Car	Maintaining Software
High Maintenance:	• Fix emergencies
Go By The Book (Regular Oil	 Provide new functionality as needed
Changes, Etc.)	 Adapt as necessary
	 Software may not degenerate over time
Nominal Maintenance:	• Fix emergencies
Go Partially By The Book (Less	 Provide some required new functionality
Frequent Oil Changes, Etc.	 Adapt when there is time
Low Maintenance:	 Fix only emergencies and small adaptations
Go Slightly By The Book (Add Oil When The Low Oil Light Goes On	 Software will degenerate over time

Sources of Software Errors

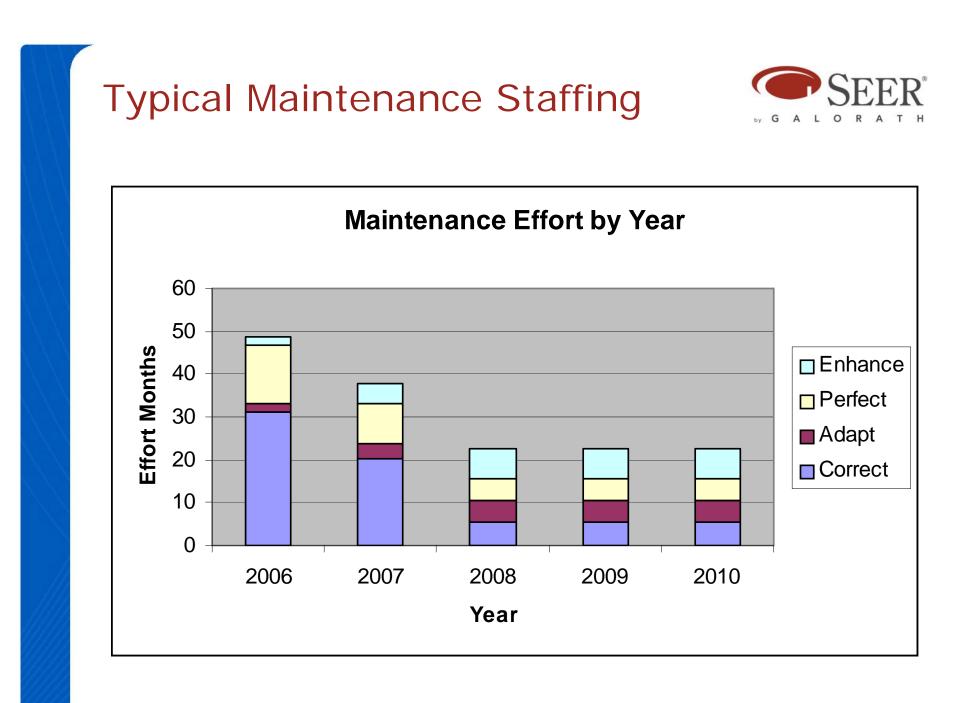
SOURCES OF SOFTWARE ERIORS (SOURCE IEEE transactions)



Software Maintenance Effort Allocation

© 2008 Galorath Incorporated

Allocation of Softwaree Effort Source IEEE

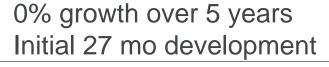


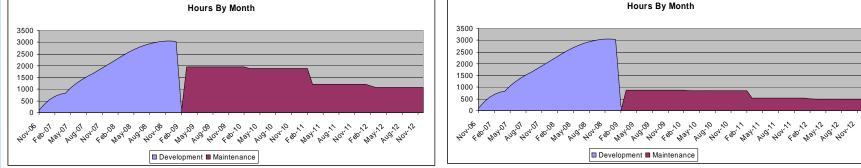
Development Defects Analysis Is a Clue to Maintenance Issues

					Time Phase	ed Defects		
vionths From Estimate -8 -7 -6 -5 -4 -3 -2 -1 Estimate 1 2 3 4 5	Delivery Date 6/30/08 7/30/08 8/30/08 9/30/08 10/30/08 11/30/08 12/30/08 12/30/08 1/30/09 3/02/09 3/30/09 5/30/09 5/30/09 7/30/09	Hours 28,330 31,121 33,996 36,938 39,930 42,956 45,998 49,042 52,061 55,073 58,033 60,938 63,778 66,542	Est. Cost 3,187,117 3,501,165 3,824,578 4,155,528 4,492,138 4,832,523 5,174,829 5,517,264 5,856,845 6,195,760 6,528,697 6,855,538 7,175,022 7,486,020	Delivered Defects 268 230 197 167 140 117 97 80 65 53 42 23 4 27 21	Defect Density 7.68 6.61 5.65 4.79 4.03 3.36 2.78 2.29 1.87 1.51 1.21 0.97 0.76 0.60	Cost Difference -2,669,728 -2,355,680 -2,032,267 -1,701,316 -1,364,707 -1,024,322 -682,015 -339,581 0 338,916 671,853 998,694 1,318,177 1,629,175	Marginal Cost / Defect Removed 8,418 9,620 11,033 12,701 14,678 17,029 19,838 23,120 27,366 32,171 38,131 45,400 54,304	
6	8/30/09	69,223	7,787,538	16	0.47	1,930,694	65,255	
		Defects	Risk				D	Defect Profile
Defects	D	ata An	alyzer			Defects 2000	Data	Analyzer +Est. Schedule
160 - 120 -						1600 1200		
80-			A			800		 Defects Inserted Defects Removed Potential Defects
40			-			400		Delivered Defects

Maintenance Growth Over Life

- Anticipated size growth from the point immediately after the software is turned over to maintenance to the end of the maintenance cycle
- May include additions of new functionality


Rating Description


Major updates adding many new functions
Moderate updates adding some new functions
Minor updates & enhancements to existing functions
No updates expected, some minor enhancements
Sustaining engineering only

100% growth over 5 years Initial 27 mo development

	Program	: Data Analyzer 👘	Program: Data	Analyzer
		Estimate	Reference	Diff.
	Development Schedule Months	27.07	27.07	0%
	Development Effort Months	342.51	342.51	0%
	Development Effort Hours	52,061	52,061	0%
	Development Base Year Cost	5,856,845	5,856,845	090
	Maintenance Effort Months	584.23	260.59	124%
S	Defect Prediction	65	65	
	Constraints	MIN TIME	MIN TIME	

Annual Change Rate

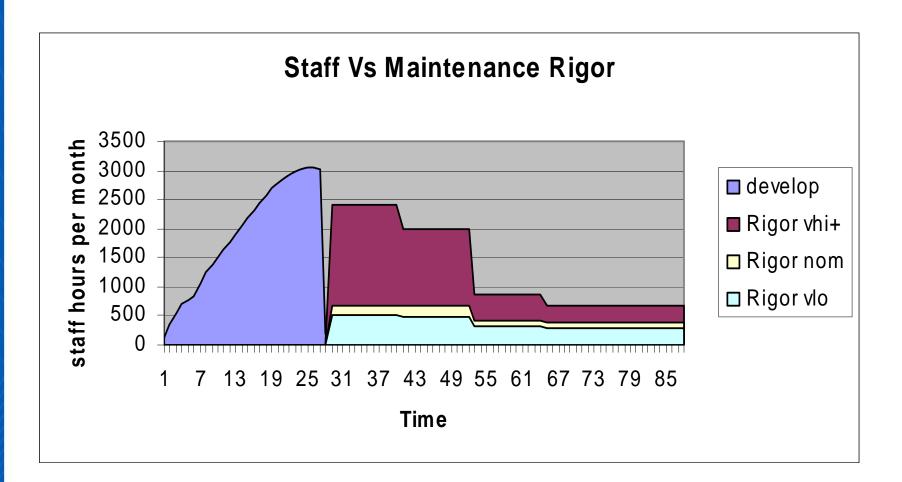
- Average percent of the software impacted by software maintenance and sustaining engineering per year
- May include changes, revalidation, reverse engineering, redocumentation, minor changes for new hardware, or recertification

<u>Rating</u>	Description
35%	Very High
15%	High
11%	Nominal
5%	Low
0%	Very Low

50% vs 0 annual change over 5 years

Program	n: Data Analyzer 👘	Program: Data Analyzer		
	Estimate	Reference	Diff.	
Development Schedule Months	27.07	27.07	0%	
Development Effort Months	342.51	342.51	0%	
Development Effort Hours	52,061	52,061	096	
Development Base Year Cost	5,856,845	5,856,845	096	
Maintenance Effort Months	392.21	282.65	39%	
Defect Prediction	65	65		
Constraints	MIN TIME	MIN TIME		

Maintenance Level (Rigor)



• Rates the thoroughness with which maintenance activities will be performed

Rating Description

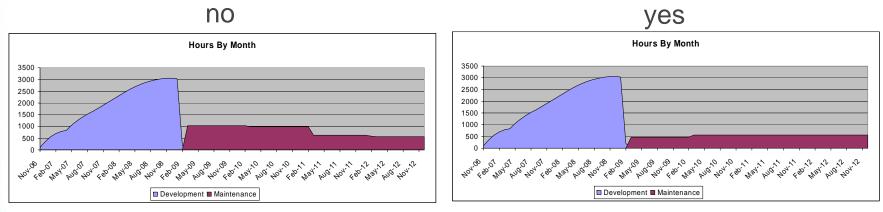
- Very High + Full complete maintenance estimate (From Raleigh Curve)
- Very High **Thorough maintenance** for all types of software maintenance activities, including regular documentation updates. Well planned in both the long and short term with frequent reviews of priorities. Dedicated maintenance staff
- High **Complete maintenance** including maintenance planning and priority review. Software documentation is updated on a semi-regular basis. Software will not degenerate over time
- Nominal Average maintenance activity. Short term planning and prioritization of maintenance activity. Documentation is updated less than once a year (change pages and addenda). Software will become less useful over time
- Low Basic maintenance, reactive to emergencies and problems as they arise. No planning of maintenance activity. Documentation is updated only with change pages and addenda. Software will degenerate over time
- Very Low Bare bones maintenance. Non-dedicated team doing emergency fixes. Little to no documentation update. Software will degenerate rapidly. May also represent sustaining engineering effort of a delivered incremental build during development of subsequent builds

Percent to be Maintained

- Enter the percent of the total code that will be maintained
- If maintenance will be shared with another organization, enter only the portion to be included in this estimate
- If software cannot be changed, do not include it in the percent to be maintained (e.g. non updateable embedded processors)

Rating	<u>Description</u>
100%	Maintenance for entire WBS element will be included in the estimate
15%	Maintenance effort is outside the estimate, but some maintenance integration effort is required
0%	No maintenance effort is included in the estimate

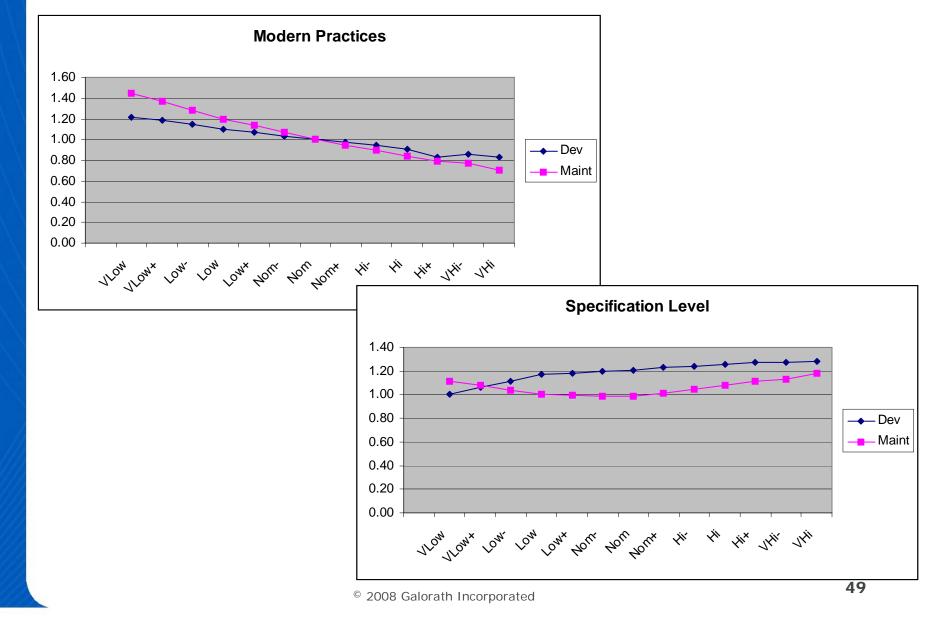
Steady State Maintenance Only

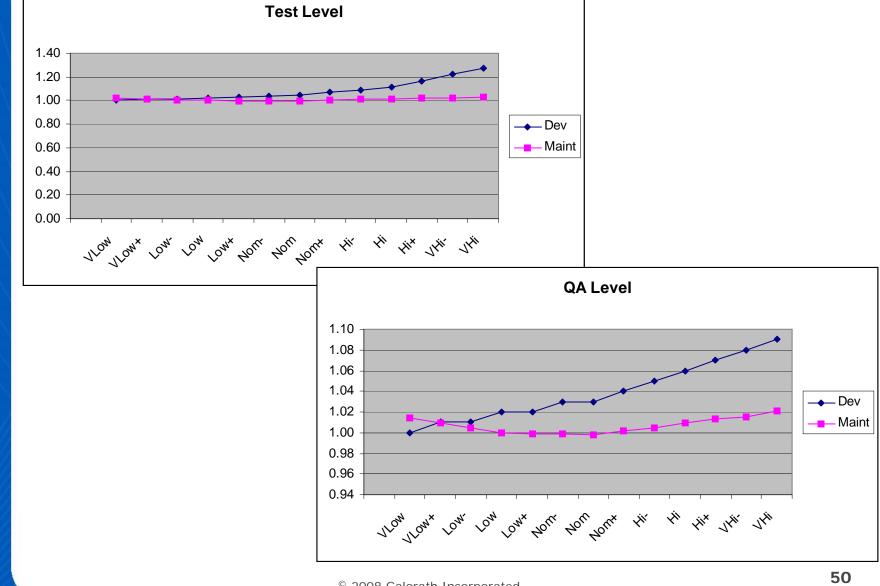


 Indicates whether maintenance profile should be effortbased, or fixed staff.

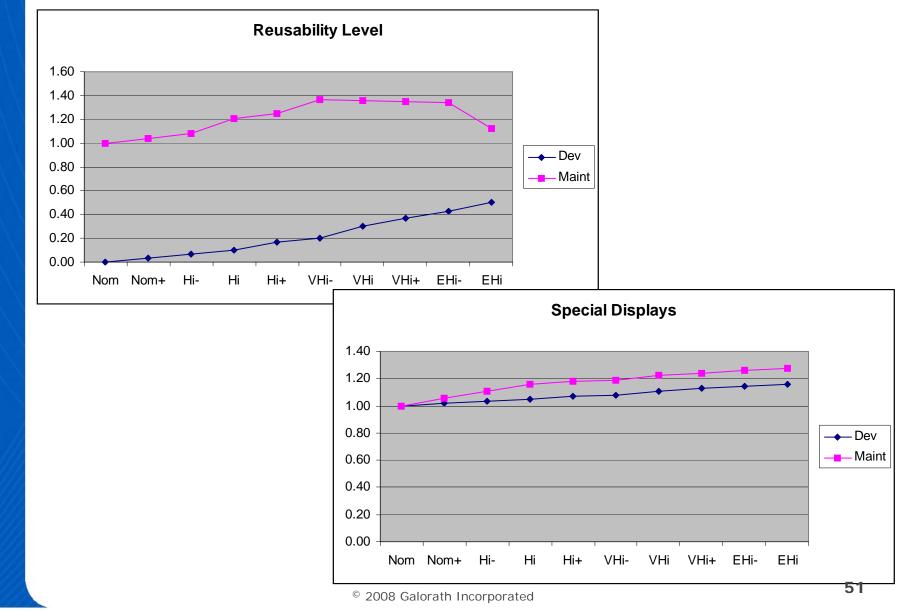
Rating Description

YES Estimate maintenance with a fixed annual staff level. (For Contracts where level of effort will not allow rampdown or planned initial block change will be added to effort)


NO Estimate maintenance with additional effort in the first years.



Some Trades.... Costs During Development and Maintenance Impacts


Parameter Sensitivity Development Vs Maintenance - 1

Parameter Sensitivity Development Vs C Maintenance - 2 by G A L O R A Т

Parameter Sensitivity Development Vs Maintenance - 3

Defects Can Be Reduced By Further Development Testing but Not Eliminated

30% 40% 50% 60% 70%

10%

1.96

20%

					Ti	me Phased De	fects		
vionths From Estimate	Delivery Date	Hours	Est. Cost	Delivered Defects	Defect Density	Cost Difference	Marginal Cost / Defect Removed		•
-8	7/01/08	28,330	3,187,117	268	7.68	-2,669,728			
-7	7/31/08	31,121	3,501,165	230	6.61	-2,355,680	8,418		
-6	8/31/08	33,996	3,824,578	197	5.65	-2,032,267	9,620		
-5	10/01/08	36,938	4,155,528	167	4.79	-1,701,316	11,033		
-4	10/31/08	39,930	4,492,138	140	4.03	-1,364,707	12,701		
-3	12/01/08	42,956	4,832,523	117	3.36	-1,024,322	14,678		
-2	12/31/08	45,998	5,174,829	97	2.78	-682,015	17,029		
-1	1/31/09	49,042	5,517,264	80	2.29	-339,581	19,838		
Estimate	3/03/09	52,061	5,856,845	65	1.87	0	23,120		
1	3/31/09	55,073	6,195,760	53	1.51	338,916	27,366		
2	5/01/09	58,033	6,528,697	42	1.21	671,853	32,171		
3	5/31/09	60,938	6,855,538	34	0.97	998,694	38,131		
4	7/01/09	63 778	7 175 099	97	0.76	1 318 177	45 400		
		Def	ects Risk					Defect Profile	
		Data	Analyzay					Data Arabasa	
Defects		Data	Analyzer				Defects 2000	Data Analyzer	
200							2000	-Est. Schedule	
					•			LSt. Somedure	
160							1600		
					/				
120					/		1200		
					•			Defects Inserted	
80-				×			800	Defects Removed	
								Potential Defects	

4 7

90%

99%

80%

l te s

10 13 16 19 22 25 28 31 34 37 40

Conclusions

- Software Maintenance can be 75% of total ownership costs
- Development decisions, processes and tools can impact maintenance costs
- Generally even a perfect delivered system quickly needs upgrade
- While software maintenance is often treated as a level of effort activity there are consequences:
 - Quality, functionality and reliability
- Software total ownership costs and risks can be estimated using SEER for Software