
A Framework for A Framework for
Integrating Systems and Integrating Systems and

Software EngineeringSoftware Engineering

CMMI Technical CMMI Technical
ConferenceConference

Denver, ColoradoDenver, Colorado

Art Art PysterPyster
art.pyster@stevens.eduart.pyster@stevens.edu

Richard TurnerRichard Turner
richard.turner@stevens.edurichard.turner@stevens.edu

November 18, 2008November 18, 2008

mailto:richturner@speakeasy.net
mailto:richturner@speakeasy.net

Agenda

Rationale: Why integrate systems and software
engineering?
Touchpoint: A framework
Initial Results
Next steps

2

CAVEAT

Our background is primarily software
Have systems engineering education and
experience, but see the world through software-
colored lenses
There is no criticism of current disciplines implied,
nor any attempt to homogenize either group of
practitioners

3

Rationale: Assertions
Interdependent systems are those where:

A "major" portion of the capabilities/value of the system is
delivered through software
A "major" portion of system quality attributes "largely"
depend on software (safety, security, agility, reliability,
availability, resilience,...)

Today most high value systems are interdependent;
that percentage is increasing
In these systems, nearly all important decisions
require equal consideration of software
engineering and systems engineering expertise

Technical, management, personnel and customer
concerns are included

But, what does it mean to integrate SE and SwE?

4

Rationale: Questions needing answers
1. What outcomes do we expect from SE/SwE

integration?
Does integration reduce key risks?

2. How do you measure integration or it’s
outcomes?

3. How and why do the SwE and SE activities
conflict, complicate, or reinforce each other?

4. How much integration is needed?
What is the scope of integration (development,
operations, business areas…)?
Is more integration always better?
Is integration domain- or application-dependent?

5. Why haven’t IPTs or CMMI solved this problem?

5

Rationale: Barriers to integration

Historical context and vestigial prejudices
SE and SwE cultures are significantly different
SE and SwE have different educational backgrounds
SE and SwE vocabularies are similar but meanings
differ

SE and SwE process implementations are often
incompatible (e.g. V versus spiral)
SE and SwE may use the same tools differently
(UML)
No language to discuss integration of SE and SwE

6

Rationale: Issues needing to be addressed
1. Vocabulary. There is no precise way to talk

about the integration of systems and software
engineering.

2. Measurement. There is no precise way to talk
about how much integration there is between
systems and software engineering in a particular
situation.

3. Entanglement. The complexity of the disciplines
makes it difficult to identify where software and
systems engineering touch.

4. Value. There is no comprehensive list of benefits
that can be achieved by integrating systems
and software engineering nor is there an
understanding of the associated costs.

7Underlined issues are focus of current research

Touchpoint

A framework to support the discussion of SE/SwE
integration
Simple and (seemingly) robust
Provides a way to describe integration at the
practitioner level
Describes touchpoints where the two disciplines
interact
Doesn’t imply discontinuous integration, but
provides observable “markers”
May help to describe the degree of
“integratedness”

8

Touchpoint Framework: Components

Processes. The ordered activities that define the
systems and software engineering disciplines
Touchpoints (TPs). The two discipline’s processes
touch when interactions between their
constituent activities affect program risk or value
– positively or negatively.
Faults. A touchpoint may exist, but the process or
activity may fail to produce its maximum value.
Resolution Strategies (RSs). For each fault, there
may be one or more actions that will eliminate
the fault or reduce its impact.

9

Touchpoint Framework: Processes

ISO 15288 provides “harmonized” systems and
software engineering processes
Agreement, Organizational Project-enabling,
Project, and Technical processes

10

Touchpoint Framework: Faults

11

Gap
Logically, there should be an interaction between the
corresponding SE and SwE processes, but the
processes do not include one. A needed activity is
therefore performed poorly, or not performed at all.

Clash
One or more activities in each of the two
corresponding SE and SwE processes produce are
incompatible and result in inconsistent results or
inconsistent actions.

Waste
Activities in the two corresponding SE and SwE
processes independently expend resources that
produce the same result or take the same action with
no added benefit to the program

Touchpoint Framework: Faults - Clashes

12

Vocabulary
SE/SW activities use the same terminology with
different meanings, or terms not recognized by the
other, making communication harder

Example: Object-oriented terminology vs. IDEF0/SADT

Value
Software and systems engineers in an organization or
program value different process characteristics

Example: Stability of baselines vs. iteration/emergence

Mental Model
Software and systems engineers think differently about
how to carry out process activities

Example: “part-of” relationships vs. “uses” relationships.

Touchpoint Framework: Example TP

13

Process Touchpoint Fault Type
Architectural
Design

Systems architectures
include significant
software components
to deliver critical
capability

Software-engineering
architectures define layers of
related functionality, while
most systems-engineering
methods are hierarchical
structures.

Clash –
Mental Model

Example from pilot research

Touchpoint Framework: Resolution Strategies
There is a desire to fix faults, especially those with high
impact on risk or value.
For each fault, there may be one or more resolution
strategies, which, when executed well, will eliminate
the fault or at least reduce its impact.

In some cases, resolution strategies are known and just
need to be applied
On the other hand, resolving some faults will require
research

Resolution strategies are grouped into four traditional
categories: process, people, environment, and
technology. Any number of resolution strategies in
each category is possible for a fault.

14

Touchpoint Framework: Example RSs

15

Process Touchpoint Fault Type
Architectural
Design

Systems architectures
include significant
software components
to deliver critical
capability

Software-engineering
architectures define layers of
related functionality, while most
systems-engineering methods are
hierarchical structures.

Clash –
Mental
Model

Resolution Strategy Category
Research must be conducted to resolve the clash between object-oriented
and structured methods. Maier provides some of the best research in this
area.

Technology

Design software architecture to look just like system architecture. Make
it easy for a system architect to understand. (SW systems mirror HW
systems, e.g. relays, motors, etc). Then SW helps the system architect
understand things in better detail.

Process

Middleware may be able to bridge the gap. Technology

Examples from pilot research

Touchpoint Framework: Measurement
Provides a way to measure how much integration has
been achieved and how good that integration is.
The amount of integration is simply the total number
of touchpoints in the implementation of the 25
processes – a higher number indicates more
integration.

A somewhat more sophisticated approach associates a
weight with each touchpoint to reflect its potential impact
on program risk or value.

The number of faults determines integration quality.
Faults can also be weighted based on their consequence.

A fault that severely impacts an important touchpoint
would be of far greater consequence than a fault
that barely impacts a minor touchpoint.

16

Initial research: Piloting

Process activities at the “touchpoint” level are
generally not found in available traditional
documentation (standard processes, WBS, plans)

Often technical management/practitioner activities

Approach – interview SE and SwE leadership
Identified ~10 programs through OSD AT&L and NDIA
Interviewed each program to identify touchpoints,
faults, resolution strategies and challenges; rigid “no
attribution” policy

Compared interview findings with the systemic
analysis findings of AT&L/SSE Program Support
Assessments

17

Piloting Results

Touchpoint elements (TPs, Faults, RSs) identified by
Systemic Analysis Category

18

Category Elements No. of Projects

Architecture 12 6

CM 1 1

EVM 2 2

Human Capital 4 2

Process Planning 3 3

Requirements 23 10

Risk Management 2 2

System Integration 4 4

Software Metrics (Visibility) 4 3

Piloting Results

Touchpoint elements not in Systemic Analysis
Category

19

Category Elements No. of Projects

Contracting 4 3

Life Cycle 7 4

Technical Reviews 2 2

Sample Architectural Design Process Findings

20

Touchpoint Fault Type
Architecture concept Underutilized software capability Gap

Resolution Strategy Category
Concept development should be performed jointly and careful trades
made that reflect HW and SW capabilities, strengths, and weaknesses

Process

Touchpoint Fault Type
Meeting non-functional
requirements

HW reliability numbers are calculated to
many decimal places, and include the
contributions of very low-level WBS
components. SW reliability is not
understood and so ignored.

Gap

Resolution Strategy Category
Research in integrated reliability approaches is needed Technology
Train systems and reliability engineers to understand software reliability People

From pilot research
Authors’ suggestion

Sample Requirements Analysis Process Findings

21

Touchpoint Fault Type
Software Requirements SW specifications that limit trade space Clash –

Mental
Model

Resolution Strategy Category
Define software requirements in terms of “what” not “how.” Process

SE and SW collaborate in the development of software requirements Process

Touchpoint Fault Type
Requirement Maturation The difference in speed of maturation

between HW and SW requirements causes
tension between SEs and SwEs.

Clash –
Mental
Model

Resolution Strategy Category
Requirements management tools and processes need to better support
iterative approaches to requirements maturation.

Technology

From pilot research
Authors’ suggestion

Sample Life Cycle Management Process Finding

22

Touchpoint Fault Type
SE and SW life cycles Life cycle speeds differ causing perceived

architecture instability and schedule
coordination problems

Clash –
Value

Resolution Strategy Category
Involve SEs in software projects using iterative life cycles to gain comfort
and trust.

People

From pilot research
Authors’ suggestion

Conclusions and Next steps

Framework seems useful
Need much more data

More programs
More variety

Refine and extend initial findings with new data
Create products that make findings useful to
programs

23

Questions and Discussion

24

	A Framework for Integrating Systems and Software Engineering
	Agenda
	CAVEAT
	Rationale: Assertions
	Rationale: Questions needing answers
	Rationale: Barriers to integration
	Rationale: Issues needing to be addressed
	Touchpoint
	Touchpoint Framework: Components
	Touchpoint Framework: Processes
	Touchpoint Framework: Faults
	Touchpoint Framework: Faults - Clashes
	Touchpoint Framework: Example TP
	Touchpoint Framework: Resolution Strategies
	Touchpoint Framework: Example RSs
	Touchpoint Framework: Measurement
	Initial research: Piloting
	Piloting Results
	Piloting Results
	Sample Architectural Design Process Findings
	Sample Requirements Analysis Process Findings
	Sample Life Cycle Management Process Finding
	Conclusions and Next steps
	Questions and Discussion

