

Department of Defense S&T In a Changing Landscape

Mr. AI Shaffer Principal Deputy Defense Research and Engineering 5 September 2008

Technology and the Modern World

"We can't solve problems by using the same kind of thinking we used when we created them"

Albert Einstein

There is no reason anyone would want a computer in their home Ken Olson, President, DEC, 1977

Everything that can be invented has been invented Charles Duell, Commissioner US Patent Office, 1899

"I think there is a world market for maybe five computers." Thomas Watson, IBM Chairman, 1943

"640K ought to be enough for anybody." Bill Gates, CEO of Microsoft, 1981

If you don't know where you are going, you might end up someplace else

Yogi Berra

These changes, among others, are ushering us toward a world where knowledge, power and productive capability will be more dispersed than at any time in our history – a world where value creation will be fast, fluid, and persistently disruptive. Don Tapscott and Anthony Williams, Wikinomics

"The conjunction of 21st century internet speed and 12th century fanaticism has turned our world into a tinderbox" -- Tina Brown ,Washington Post, 19 May 2005

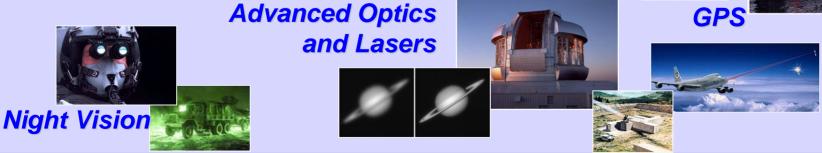
Director of Defense Research & Engineering Vision

VISION: To develop technology to defeat any adversary on any battlefield

Any Battlefield includes physical, cyber, space, undersea, etc

Any Adversary includes both State and non-State actors

DoD S&T Has Developed Technologies That Changed Warfighting


Stealth

- Disruptive technologies resulting from technology push:
 - Internet
 - GPS
 - Night vision
 - Lasers
 - Stealth
 - Predator
 - Global Hawk
- <u>None of these emerged from</u>
 <u>requirements</u>

All provided - dominant capability

Yesterday's Investment in S&T Provided Today's Capability Advantage

Desert Storm

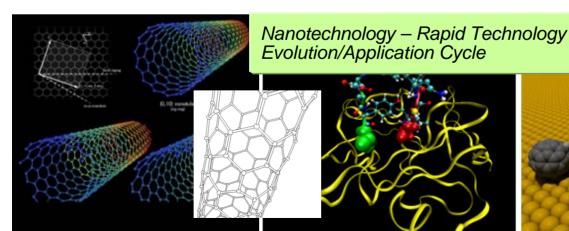
- US dominance over Soviet-era systems "shocked" potential adversaries and combined to give US conventional superiority
 - Precision Weapons
 - Night Vision
 - Low Observability
 - Networked Systems
 - Space-Enabled Capabilities
- The advent of informationbased warfare feeding the emergence of irregular warfare

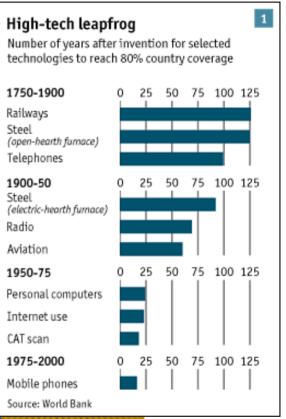
An information age Sputnik?

NO....but this guy is far cry from a massed country

George Hotz, 17, of Glen Rock, New Jersey holding the iPhone[®] that he separated from the AT&T network and used on the T-Mobile Network. Career goal: hack the human brain Apple and AT&T released the iPhone on 29 June

- An exclusive agreement guaranteed the iPhone could only be used on AT&T's mobile network
- Hotz spent approximately 500 hours working on his "summer project"
- □ The hack was announced on 24 August.
 - □AT&T market cap: \$245B
 - annual revenue: \$90B
 - □Apple market cap: \$117B
 - annual revenue: \$23B
 - □Hotz PRICELESS


This is the new asymmetry—victory goes to the agile and innovative


A Changing There are students in China, World . . . Australia, Austria, Bangladesh, and the USA who collaborate on projects everyday Military Impact of Uses Mass **Collaboration Development** Pace Emerging **Economic** Mega viechnoloc Expansion **Trends** Of R&D The World Is Flat A BRIEF HISTORY OF Funding The Thomas L. Friedman Expanding The Black Education Swan PH.D.'s AWARDED IN SCIENCE AND ENGINEERI **Syndrome** Base

Pace of Technology Continues to Increase

- Time between modeling of semiconducting properties of germanium in 1931 and first commercial product (transistor radio) was 23 years
- Carbon nanotube
 - Discovered by Japan (1991)
 - Researchers recognized carbon nanotubes were excellent sources of field-emitted electrons (1995)
 - "Jumbotron lamp" nanotube-based light source available as commercial product (2000)

Technology Development Outpaces Traditional Acquisition (and getting faster)

"Moore's Law" — Computing doubles every 18 months

"Fiber Law" — Communication capacity doubles every 9 months

"Storage Law" -----> Storage doubles every 12 months

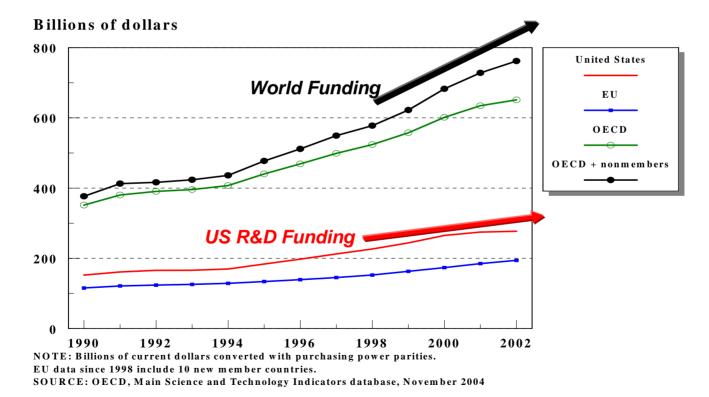
Defense Acquisition Pace

F-22Milestone I:Oct 86IOC:Dec 05*ComancheMilestone I:Jun 89IOC:Sep 09

* Computers at IOC are 2,000 X faster, hold 130,000 X bits of information than they did at MS I

Technology growth is non-linear... Acquisition path has been linear

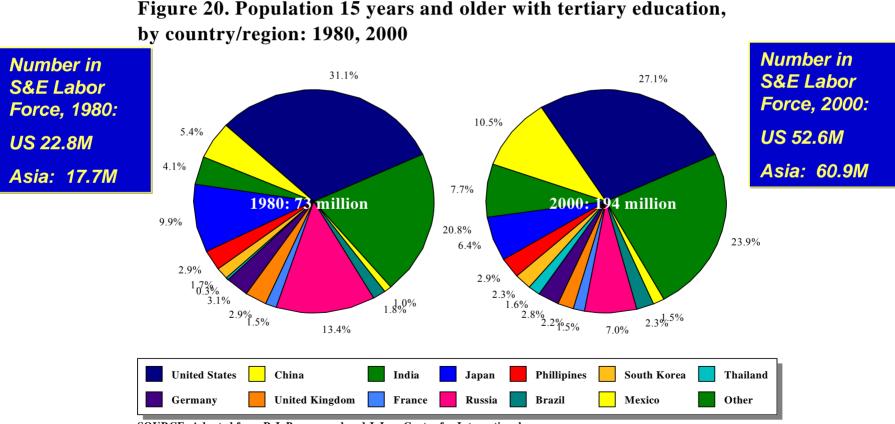
DoD Acquisition Programs: Example Timelines and Cost



Program	Service	MS I/II	IOC	Total RDT&E
F-22A	Air Force	OCT 1986	DEC 2005	\$29B
Cobra Judy Replacement	Navy	SEP 2004	SEP 2011	\$1.5B
Future Combat System (FCS)	Army	MAY 2003	DEC 2014	\$30B
Joint Strike Fighter	DoD	NOV 1996	USMC: MAR 2012 USAF: MAR 2013 USN: MAR 2013	\$46B
Virginia Class Submarine	Navy	AUG 1994	NOV 2006	\$5B
SBIRS High	Air Force	OCT 1996	SEP 2008	\$8B

International R&D trends

• R&D expenditures are increasing robustly around the world, driven by both governments and industry.


Figure 1. Estimated worldwide R&D expenditures: 1990-2002

Growth of Educated Asian Population

National Science Foundation

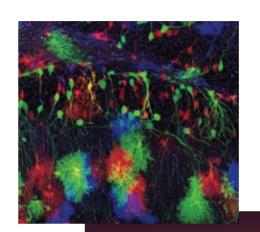
- International S&E labor force data can only be approximated.
- From 1980 to 2000, US 4%; Asia +5%; Europe 4%

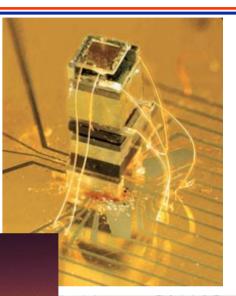
SOURCE: Adapted from R.J. Barrow and and J. Lee, Center for International Development: International Data on Educational Attainment, 2000

Source: National Science Foundation, S&E Indicators 2006

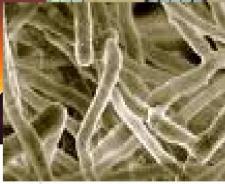
The "Black Swan" Syndrome

Cognitive biases create false expectations of predictability. Acknowledging uncertainty may allow us to adapt better to unforeseen events.

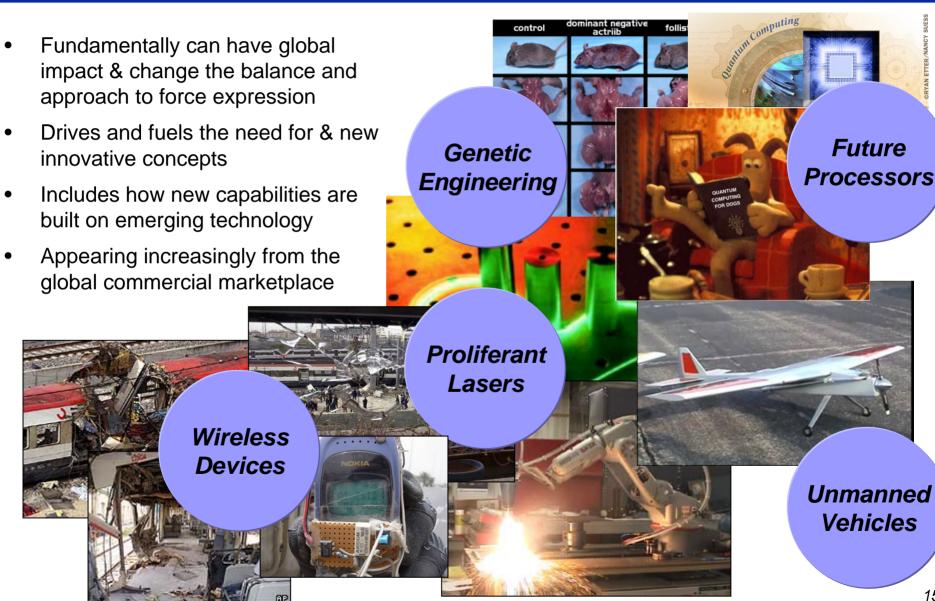



- "Black Swans": large-impact, impossible to predict, and rare event beyond the realm of normal expectations
 - 9/11, Google, internet bubble
- "Outside context problem": **Problem outside** a given groups experience, with an immediate, ubiquitous and lasting impact upon it
 - Perry's Black Ships arriving in Japan
- "Accelerating change": *increase in rate of technological/ cultural/social progress in history (contrast to linear view)*
 - Accumulation of knowledge, access to knowledge and lowering of transactional barriers to knowledge

March/April 2008 MIT Innovations List of 10 Emerging Technologies

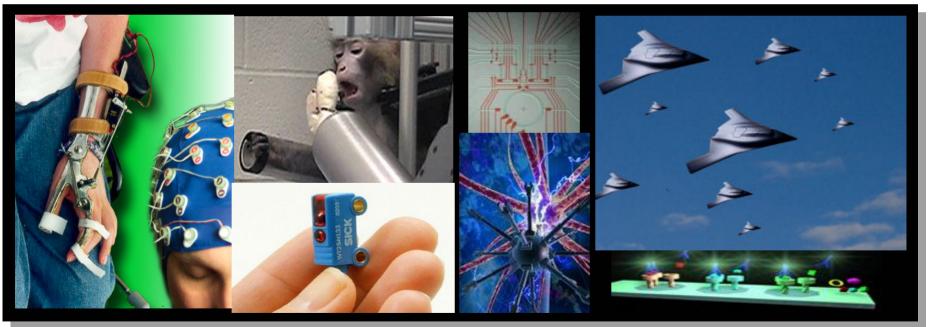


- Cellulolitic Enzymes
- Atomic Magnetometers
- Surprise Modeling
- Connectomics
- Probabilistic CMOS
- Reality Mining
- Offline Web Applications
- Graphene Transistors
- Nanoradio
- Wireless Power



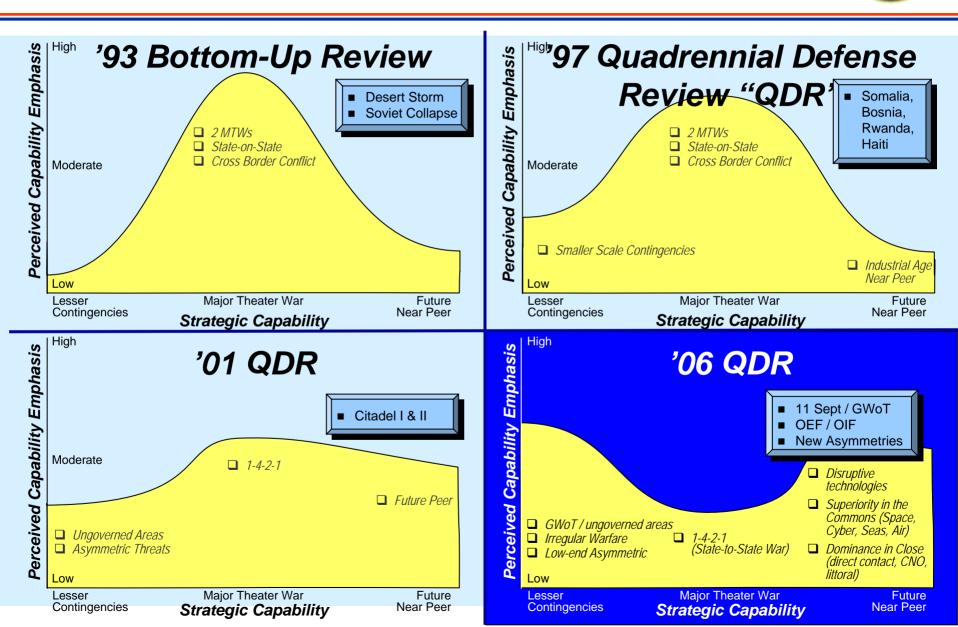
But Where is the Black Swan?

Commercial / Military Hybrids

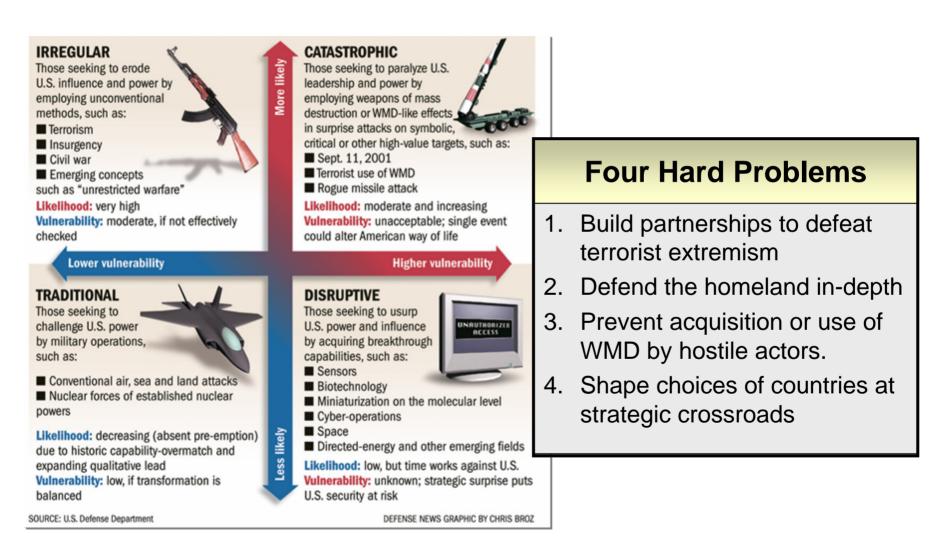


Implications

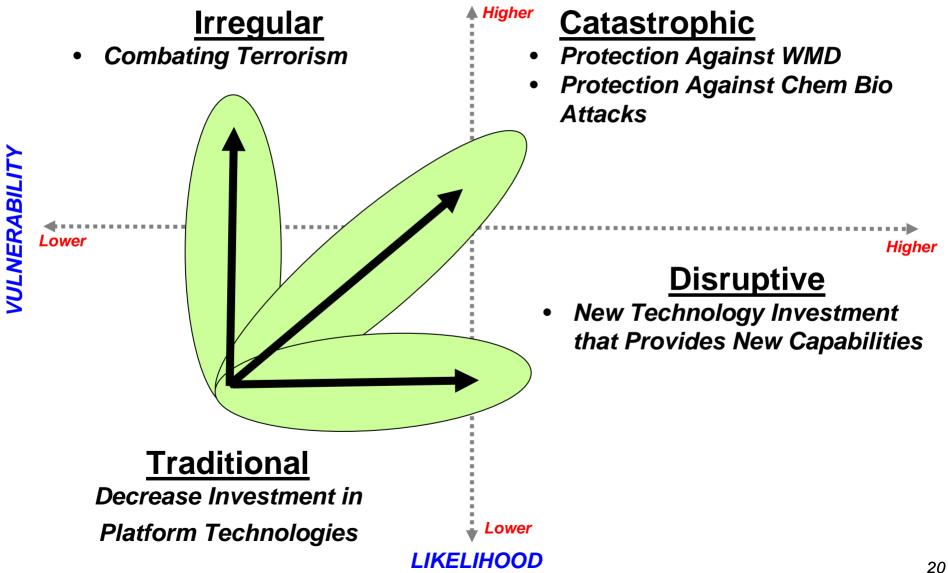
- Greater base of technology development, more agility than previous
- Need Enhanced Technology Scouting and Investment
- Technology increasingly hybrid, commercial/military


Potential for technology surprise may be increased

Where are we going? S&T Strategy and Plans



Decade of Strategic Evolution

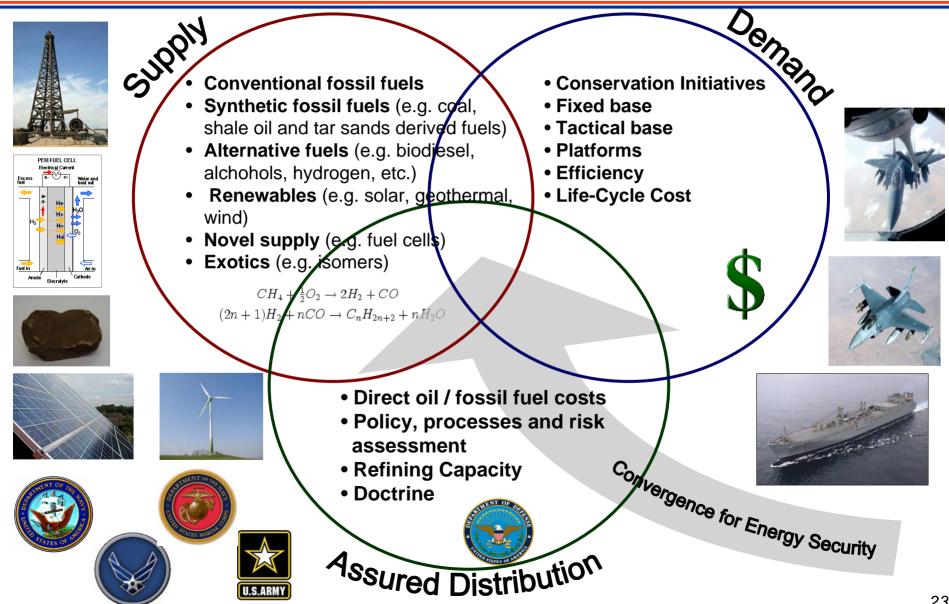

2006 QDR Challenge Construct

National Defense Strategy Drives Investment Strategy

Science and Technology Enabling Technology Priorities

- Technology focus areas:
 - Biometrics and Biological exploitation
 - Information technology and applications
 - Persistent Surveillance Technology
 - Networks and Communication
 - Human, Social, Cultural, and Behavioral Modeling
 - Language
 - Cognitive Enhancement
 - Directed Energy
 - Autonomous systems
 - Hyperspectral sensors
 - Nanotechnology
 - Advanced Materials
 - Energy and Power
 - Affordability
 - Combating Weapons of Mass Destruction Technologies
 - Energetic Materials

In Blue—Areas with Substantial Increases in FY08/09 President's Budget Request


Science and Technology Enabling Technology Priorities

- Technology focus areas:
 - Biometrics and Biological exploitation
 - Information technology and applications
 - Persistent Surveillance Technology
 - Networks and Communication
 - Human, Social, Cultural, and Behavioral Modeling
 - Language
 - Cognitive Enhancement
 - Directed Energy
 - Autonomous systems
 - Hyperspectral sensors
 - Nanotechnology
 - Advanced Materials
 - Energy and Power
 - Affordability
 - Combating Weapons of Mass Destruction Technologies
 - Energetic Materials

In Blue—Areas with Substantial Increases in FY08/09 President's Budget Request

Energy Security Challenge

Ongoing Activity, Goals 1 and 2 - Installations -

- Each Service has active programs or pilots to reduce installation energy and increase resilience
- Example programs

Army	Navy	Air Force
 Net zero pilot, Ft. Irwin –\$25M upfront cost 	• Existing geothermal plant, China Lake, CA	Infrastructure Energy Plan
–\$105M savings in 5 years	-270 MW (supports ~100,000 households)	-Facility energy intensity -13% since
 Tent foam, Iraq -\$95M upfront cost -Estimated reduction \$300K+/day Energy efficient housing demo, Ft. Belvoir 	• Building geothermal plant at NAS Fallon –Working with Hawthorne Army Depot	FY03 • New solar farm, Nellis AFB, NV -Powers 25% of base • Testing was systems

11

Ongoing Activity, Goals 1 and 2 - Platforms -

- Each Service has active programs or pilots to reduce platform energy and increase resilience
- Example programs

Army	Navy	Air Force
• Fuel Efficient Ground Vehicle Demonstrator –30-40% increased efficiency	 Solid oxide fuel cells Reduced friction coatings for propellers 	Advanced Turbine Research -25% increased efficiency
 Thermal Management 	-5+% increased efficiency	• Efficient engines for UAVs and generators
 Rotorcraft Advanced Turbine Engine 	• UAVs/UUVs	-20% increased efficiency
–Up to 25% efficiency with increased horsepower	Ion Tiger Fuel cell UAV Radiator Finel nel soster	Synfuel certification ongoing –Goal: Fleet
	22 Iter hydrogen tank	CE UAV': Transports ISR

President's Budget Request FY2009 For S&T— A Reflection of the Changed Priorities

- PBR09 S&T Request continues the realignment initiated in FY08 to address capability gaps identified in the 2006 QDR
 - Special ("non-kinetic"/enabling) technologies:
 - Clandestine Tagging, Tracking and Locating
 - Biometrics
 - Human, Cultural, Social Behavior Modeling
 - Networks
 - Persistent Surveillance
 - Technologies to decrease energy consumption/increase alternatives
 - Combat and tactical armor for protection against a range of threats
 - Accelerating transition to fielded systems

Investment shifted away from platform-specific technologies

President's Budget Request FY2009 For S&T— A Reflection of the Changed Priorities (Cont)

- New technology/emphasis areas
 - \$270M increase to Basic Research
 - SecDef initiative to increase peer-reviewed basic research
 - To develop innovative solutions
 - Enhance the science and engineering personnel base
 - Increase will support targeted focus areas for
 - Early to mid-career scientists and engineers with a team of students and post docs
 - Single Investigator awards with larger grants
 - Emphasis will be on emerging technology areas, e.g.,
 - Cyber protection and information assurance
 - Biosensors and biometrics
 - Human sciences (cultural, cognitive, behavioral, neural)
 - Software sciences and materials
 - Immersive sciences for training and mission rehearsal
 - Power and energy management
 - Anticipate about 500 focused research efforts

President's Budget Request FY2009 For S&T— A Reflection of the Changed Priorities (Cont)

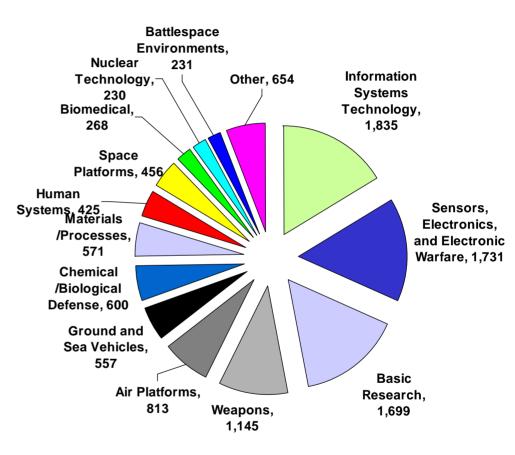
- New technology/emphasis areas (Cont'd)
 - Increased protection for dismounted troops and ground forces
 - Research in plasma and meta-materials to address emerging threats
 - Cyber protection **
 - Hypersonics/Prompt Global Strike (Blackswift) New technology prototype **

** **Note**: Cyber protection is funded in DARPA BA 6 Air Force funding for Blackswift is in BA 7 VISION: To develop technology to defeat any adversary on any battlefield

Any Battlefield includes physical, cyber, space, undersea, etc

QUESTIONS?

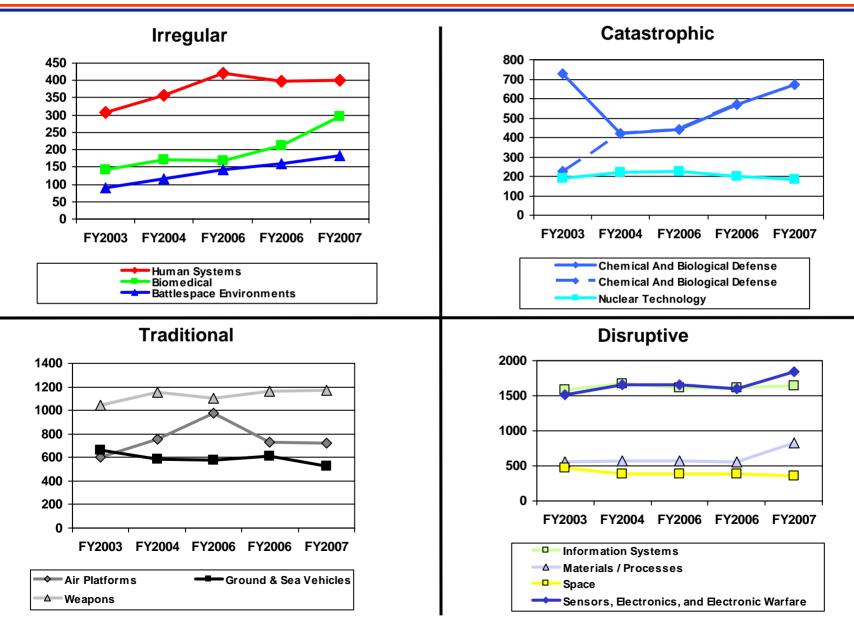
Transformation


1010 010 010 010

Characterization of the FY09 DoD S&T Program

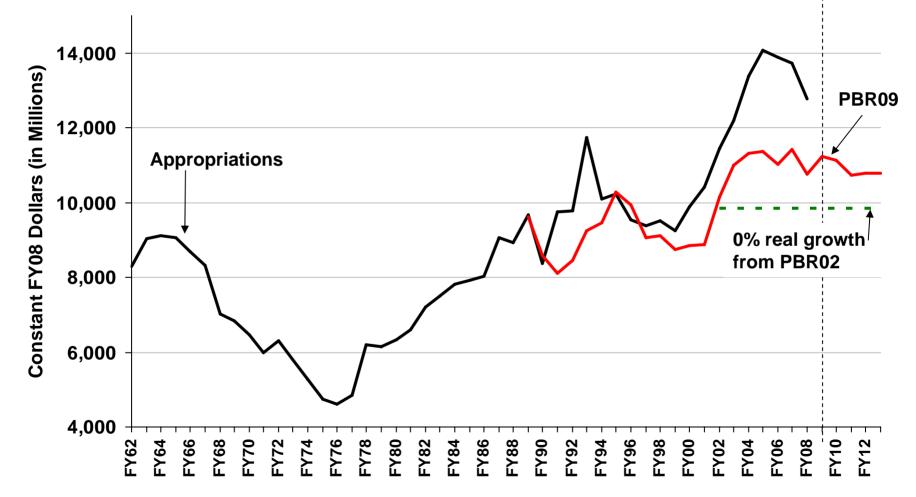
• Funding

- Current year S&T dollars: \$10.77B FY08 to \$11.48B FY09
- Percent of DoD funding: 2.24% FY08 to 2.22% FY09
- Over 50% of total investment in 4 functional areas:
 - Information Systems (1.8B)
 - Sensors, Electronics / EW (1.7B)
 - Basic Research (1.7B)
 - Weapons (1.1B)



DoD S&T program is focused on "sensing and shooting"

30


Funding By Technology (Reliance) Areas

31

DoD S&T – Historical Context - In FY08 Constant Dollars -

In FY03, includes \$203M allocated to Def Emergency Response Fund (DERF) S&T in a separate DoD transfer account

FY09 S&T request is among the highest

QDR Priority Formulation

- Balanced what the US wants to protect against (Strategic Challenges) and outcomes the US wishes to accomplish (Strategic Outcomes)
 - Strategic Challenges
 - Traditional
 - Irregular Warfare
 - Combating WMD
 - Disruptive
 - Strategic Outcomes
 - Defeat Terrorist Networks
 - Defend the Homeland in-Depth
 - Shape Choices of Countries at Strategic Crossroads
 - Prevent the Use of WMD

QDR In A Banner – A Shift in Emphasis from "Kinetic" to "Non-Kinetic" Systems

Capabilities to Shape the Choices of Countries at Strategic Crossroads

- Improved language and cultural awareness
- Persistent surveillance (penetrate and loiter)
- Cyberspace shaping / defense
- Secure broadband communications
- Integrated defense against all missiles

Kinetic

- Air dominance
- Undersea stealth

Most of These Capabilities are Joint, Coalition Centric

Capabilities to Defeat Terrorist Networks

- Persistent surveillance
- Locate, tag, and track terrorists in denied areas
- Capabilities to fuse intelligence
- Language and cultural awareness
- Non-lethal capabilities
- Joint coordination, processes and systems
- Urban warfare capabilities
- Prompt global strike
- Riverine warfare capabilities

Kinetic Capabilities

All These Capabilities are Joint, Coalition Centric

Non-kinetic capabilities

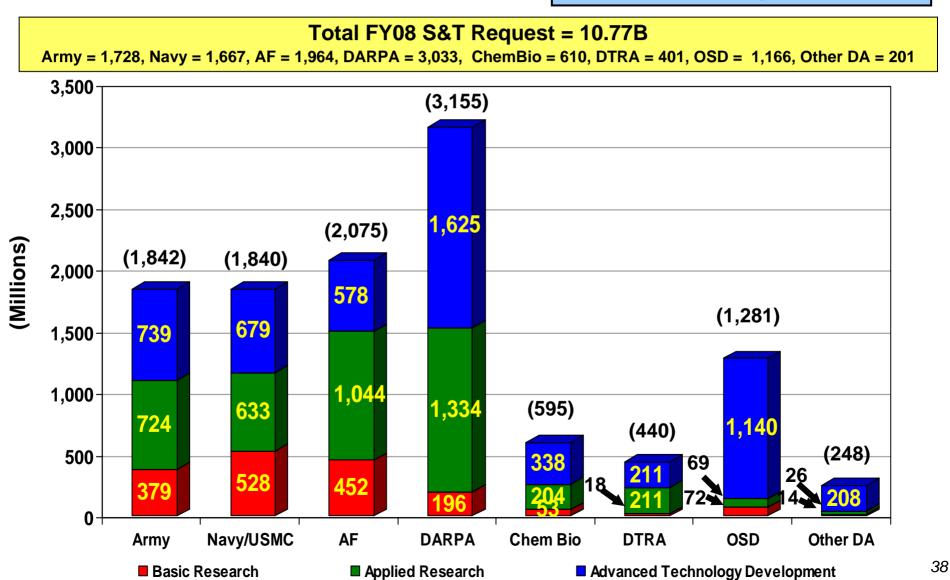
Capabilities to Defend the Homeland In Depth

- Interoperable, joint command and control
- Enhanced air and maritime awareness
- Consequence management
- Broad spectrum medical countermeasures

All These Capabilities are Joint, Coalition Centric

Capabilities to Prevent the use of Weapons of Mass Destruction

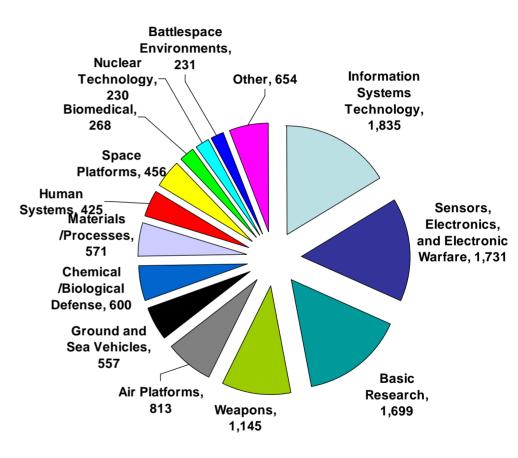
- Locate, tag, track, and characterize
- Stand off fissile material detection
- Wide area persistent surveillance
- Capabilities to "render safe" WMD
- Non-lethal weapons



All These Capabilities are Joint, Coalition Centric

FY09 DoD S&T Budget Request

Total FY09 S&T request = \$11.48B



Where is the DoD S&T money going?

• Funding

- Current year S&T dollars: \$10.77B FY08 to \$11.48B FY09
- Percent of DoD funding:2.24% FY08 to 2.22% FY09
- Over 50% of total investment in 4 functional areas:
 - Information Systems (1.8B)
 - Sensors, Electronics / EW (1.7B)
 - Basic Research (1.7B)
 - Weapons (1.1B)

DoD S&T program is focused on "sensing and shooting" But is changing.....

PBR09 S&T Request Addresses Capability Gaps

- PBR09 S&T Request continues the realignment initiated in FY08 to address capability gaps identified in the 2006 QDR
 - Special ("non-kinetic"/enabling) technologies:
 - Clandestine Tagging, Tracking and Locating
 - Biometrics
 - Human, Cultural, Social Behavior Modeling
 - Networks
 - Persistent Surveillance
 - Technologies to decrease energy consumption/increase alternatives
 - Combat and tactical armor for protection against a range of threats
 - Accelerating transition to fielded systems

Investment shifted away from platform-specific technologies

PBR09 S&T Request Addresses Capability Gaps (Cont'd)

- New technology/emphasis areas
 - \$270M increase to Basic Research
 - SecDef initiative to increase peer-reviewed basic research
 - To develop innovative solutions
 - Enhance the science and engineering personnel base
 - Increase will support targeted focus areas for
 - Early to mid-career scientists and engineers with a team of students and post docs
 - Single Investigator awards with larger grants
 - Emphasis will be on emerging technology areas, e.g.,
 - Cyber protection and information assurance
 - Biosensors and biometrics
 - Human sciences (cultural, cognitive, behavioral, neural)
 - Software sciences and materials
 - Immersive sciences for training and mission rehearsal
 - Power and energy management
 - Anticipate about 500 focused research efforts

PBR09 S&T Request Addresses Capability Gaps (Cont'd)

- New technology/emphasis areas (Cont'd)
 - Increased protection for dismounted troops and ground forces
 - Research in plasma and meta-materials to address emerging threats
 - Cyber protection **
 - Hypersonics/Prompt Global Strike (Blackswift) New technology prototype **

** **Note**: Cyber protection is funded in DARPA BA 6 Air Force funding for Blackswift is in BA 7


Summary: A Changing World

- Globalization of S&T
 - Creativity and agility are needed!
- Generation of new Scientists and Engineers
- New Emergent Technology

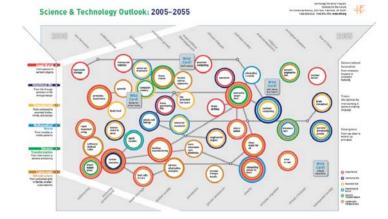
- Impact on US Economy Military
- Pace of Technology Development
 *Net Effect: Forcing Factors have changed
 DoD /US Strategy evolving, but immature*

^aR&D spending as a percentage of GDP and spending grow th are defined in Figures 1 through 3. R&D spending levels are in current billions of PPP dollars. ^bGrow th rates are calculated since 2000, except for Russia, which was calculated since 1992 due to high uncertainty in the regression since 2000. Sources: OECD, Main Science and Technology Indicators Volume 2005; UNESCO, Science Report 2005; Indian Ministry of Science and Technology, Science and Technology Annual Report 2004-2005; H. Arfaei, "Status of Scientific Research -- Iran 2005", April 2005; CIA World Fact Books, 1981-1990, 1997- 2004; and World Bank, Development Indicators database, 1981-1990, 1997-2004.

UNCLASSIFIED

The Evolution to New Ideas

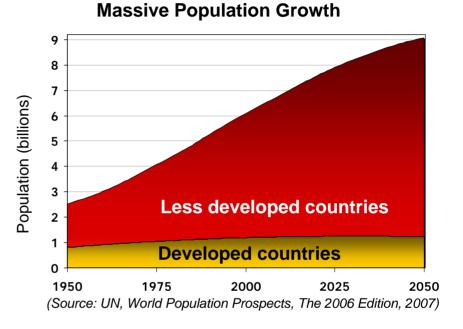
The DoD, Like the World, is moving from Physics Based to Multidisciplinary and Non-Kinetic Science


> "In times of change, learners inherit the Earth, while the learned find themselves beautifully equipped to deal with a world that no longer exists"

Forecasting Future Disruptive Technology—Mass Collaboaration

- DoD & National Academies
- Teaming to produce a recurring technology forecast that is a:
 - Multidimensional Description of the technology
 - Estimation/description of impact
 - Temporal profile of development
 - Based on a wide group of experts
 - Develop a New web collaboration environment
 - Industry, academia, venture capitalists, government experts, etc.
 - Use collaboration environment to access a global community
 - Examines both traditional and nontraditional technology trends

Looking more than 15 years ahead . . .



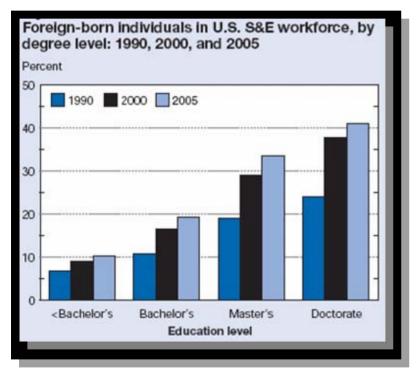
Using mass collaboration as the tool for "*Effective Forecasting*"

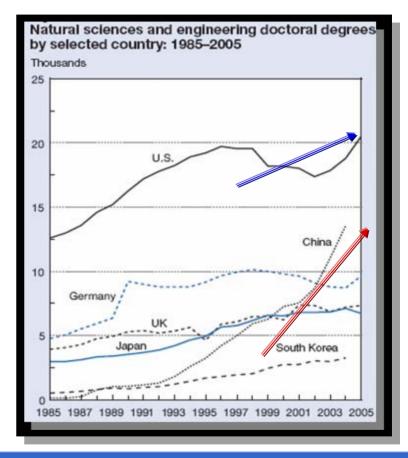
Demographic Trends

- Demographic trends are the most predictable of the trend sets
- The major trends with significant defense implications:
 - North-South divide in age structure
 - Demographic "bonus" India, Latin America
 - Youth bulges in fragile states and migrant populations
 - Aging and low birth rates in key allies
 & China
 - International and internal migration
 - Push away from trouble
 - Pull to economic opportunity
 - Migrating political interests
 - Youth, conflict, and ideology
 - Urbanization

Demographic change will increase stress on fragile states, create risks around access to resources, and generate a range of governance, societal, cultural, & health issues as states adjust to population transformations within and between states

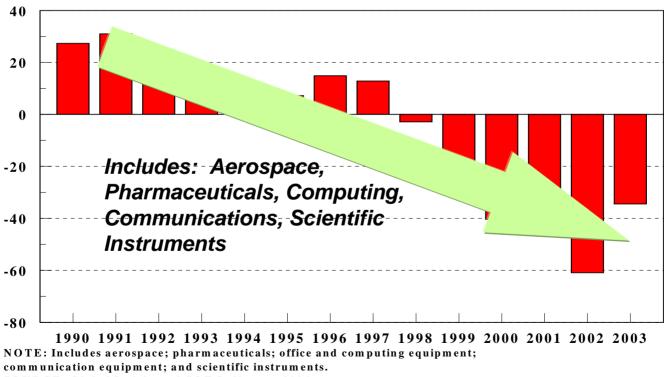
Disruptive Technologies *Frequently Take a Forcing Function*




Technology	Approximate Date	st Lab Demo	Approximate Date	
of First Military Applications				
	••	٦		
Radio	1901	1914	> World War I	
Airplane	1903	1916		
Vacuum Tube	1906	1915		
Mechanized Tank	1916	1916		
Liquid-Fueled Rockets	1922	1944		
Radar	1925	1939	> World War II	
Gas Turbine	1935	1944		
Digital Computer	1943	1945		
Ballistic Missile	1944	1945		
Nuclear Weapons	1945	1945		
Transistor	1948	1957	Cold Wor	
Inertial Navigation	1950		Cold War	
Nuclear Propulsion	1950		1954	
Artificial Earth Satellites	1957	1960		
Integrated Circuit	1960	1970		
	of COT Voon the	nontw	ato alkad	
Precisic One function of S&T – Keep the pantry stocked				

Comparison of Scientists & Engineers ((S&Es)

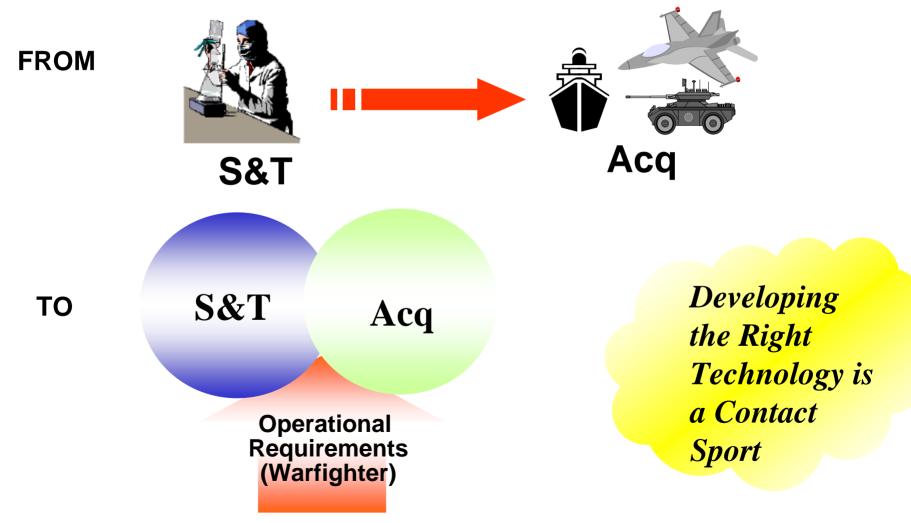
Number of Foreign Born in US S&T Workforce has Quadrupled over 15 years. (# of Non-US Citizens is Unknown)



Number of U.S. doctoral degrees awarded in S&E has increased three decades in a row, however, virtually all of the recent growth reflects a rising number of degrees to non-U.S. citizens: 60% in engineering and computer science and nearly 45% in the physical sciences.

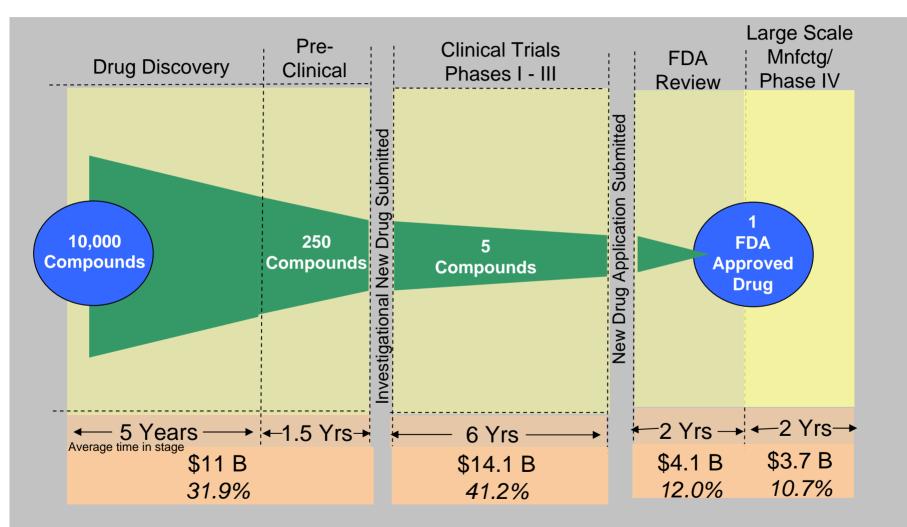
• The trade balance of U.S. high technology industries has turned negative

Figure 12. U.S. trade balance for five high technology industries: 1990-2003 Billions of dollars

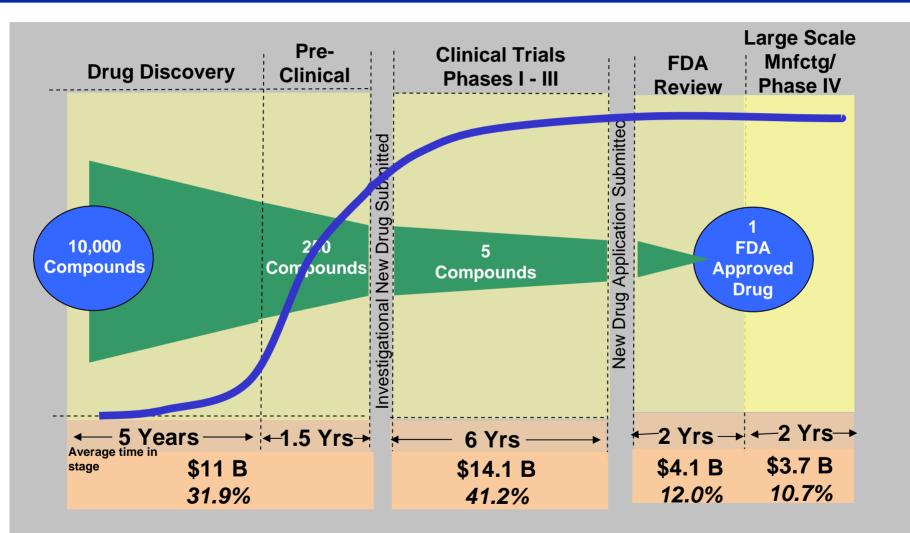


SOURCE: Global Insight and S&E Indicators 2006

Enhancing Technology Transition is Changing the Management Model



All Services are moving their acquisition processes


Biopharmaceutical R&D

Source: Pharmaceutical Research & Manufacturers of America, Pharmaceutical Industry Profile 2005 (Washington, DC: PhRMA, March 2005).

Source: Pharmaceutical Research & Manufacturers of America, Pharmaceutical Industry Profile 2005 (Washington, DC: PhRMA, March 2005).

Technology	Approximate Date Of First Lab Demo	Approximate Date of First Military Applications
Radio Airplane Vacuum Tube Mechanized Tank	1901 1903 1906 1916	1914 1916 1915 1916 World War I 1916
Liquid-Fueled Rockets Radar Gas Turbine Digital Computer Ballistic Missile Nuclear Weapons	1922 1925 1935 1943 1944 1945	1944 1939 1944 1945 1945 1945
Transistor1948Inertial NavigationNuclear PropulsionArtificial Earth SatellitesIntegrated CircuitLaserPrecision Weapons	1950 1950 1957 1960 1961 1965	957 1955 1954 1960 1970 1967 1967 1967

One function of S&T – Keep the pantry stocked

Overview

- A Changing World
- A Quick look at the **Quadrennial Defense Review**
- Implications of the QDR on the DoD **Research and** Engineering Investment

did you Miss Faversham?

Technological "Shock" of Desert Storm

- Based on dominant US capabilities "in the commons"
 - Low observability
 - Spaced-based capabilities
 - Comms
 - GPS
 - Night Vision
 - Info Ops
 - Missile Defense

