EXPANDING THE REALM OF POSSIBILITY

SIGNAL PROCESSING MEANS FOR DETECTING AND DISCRIMINATING BETWEEN STRUCTURAL CONFIGURATIONS AND GEOLOGICAL GRADIENTS ENCOUNTERED BY KINETIC ENERGY PENETRATING PROJECTILES

14 May 08

Program Overview

- Develop a Signal Processing Method to:
 - >Detect and Discriminate between
 - Natural & Structural Layers Encountered During Terra-Flight
 - Distinguish Gradients Encountered During Flight
- Verify the Algorithm (method) Against Multiple Real World Event
- Patent the Algorithm

Program Goals

- Set-up a Matlab Simulink Algorithm Simulator
- Verify the Algorithm (method) against Multiple Real World Events (digital signals)
- Transfer Algorithm to 'g' Hardened DSP Controller Chip
- Develop Operator Interface for DSP Chip
- Verify Chip Operation with Real World Analog Signal Inputs

The Acceleration Measurement

- Rigid Body (RB) Movements (Tape Measure) form basis of the Algorithm
 - Body encountering a resisting target with a force of opposite sense as velocity and proportional to V²
 - Rise time equal to crater depth (Nose Length)
 - RB Waveform a non-structured trapezoid (= low frequency <100 Hz)

Characteristics of RB Acceleration Records

Expanding the Realm of Possibility

Superimposed On the Measurement & Masking the Rigid Body are:

- KHz signal movements representing (i.e., measured by micrometers)
 - Vibrational modes of the penetrator structure
 - Mounting of the transducer
 - Internal Component Freight Training
- Some MHz signals representing
 - Steel on Steel contact
 - Kinematic Mass Property Changes

Un-Masking the Rigid Body Movement

- It is known (One Way) that an integral will detect layers
 - But slope detection merely returns the signal
- What Venue supports detection of targets masked by High Frequency Content signals?
 - Answer
 - Radar Targets
 - LFM Acquisition (Purposely Masks LF Target) and detected by Pulse Compression (An Integration)

Pulse Compression It's Analog to Deceleration

- Energy to a target has been purposely modulated with multiple frequencies. Multiple Freq Sources in Projectile.
- The target is hit with the energy and returns a high frequency content (HFC) signal. Penetrator strikes target & returns HFC Signal
- Each 'f' contains target information, both cases Goal = Extract
- The return pulse is compressed by slowing down the high frequencies and speeding up the low frequencies using analog devices or
 - A matched filter used but this is an autocorrelation
- Due to the high frequency of the return radar signal analog pulse compression is easier then digitizing and running an autocorrelation.
- Due to the relatively low frequency of a penetration event KHz versus GHz, digitization and autocorrelation is more appropriate.
- Results are the same:
 - Target resolved in range (ringing removed and info stored in low freq range resolved pulse)

Pseudo

0.75 ft (5 ksi) + 13 ft air + 0.75 ft (5 ksi) + 13 ft air + 0.75 ft (5 ksi) + 13 ft air + 4 ft (10 ksi) + 1.7 ft air + 4 ft (10 ksi)

Where is the Uniqueness?

- In a sphere, cylinder, plane, concrete?
- In a radar system each target is identified by a unique number (its RCS)
- In a penetrating system each target is identified by a unique unit less value called peak 'g'
- This identifier is independent of striking or draining velocity and only dependent on geometry and target resistance
- Therefore penetrator targets (for the same penetrator geometry) that are not the same are different

Expanding the Realm of Possibility

If Correct Data Should Converge to Single Value

Peak 'g' Convergence

Velocity Stepped thru Natural Cemented Sand Target

Expanding the Realm of Possibility

Velocity Stepped thru Limestone Target

Peak 'g' Convergence

Velocity Stepped thru Concrete Target

Peak 'g' Convergence

0

Q(tnext) refers to the output on a clock pulse (CLK) rising edge and when the chip is enabled (KCLR-=0). The D flip-flop transfers "data" into a memory element (flip-flop) on each clock pulse (CLK). The chip enable input signal, ICLR, is sometimes given the designation G (for gate) to inidcate that this input enables the gated latch allowing data entry into the flip-flop.

DLatch 2. The D latch flip-flop block has the following characteristic tables Q(t) D(t) Q(tnext)

- 0
- 0

0

The D latch transfers "data" into a memory element (flip-flop). The D latch flip-flop is sometimes called a gated D-latch. The chip enable input signal, C, is sometimes given the designation G (for gate) to indicate that this input enables the gated latch allowing data entry into the flip-flop.

3. Convert blocks match logic signals between blocks. Example: Booleon True/Fake to digital one/zero.

4. Smart Fuze Algorithm is enabled on "g" switch closure at impact.

5. Depth Subystem velocity constant is target striking velocity.

6. A modified dead zone dynamic block only outputs a digital zero when the signal is within the dead zone (between upper and lower set limits).

Figure 5 Hard Layer Detection

Figure 2 Auto Correlation & Hard Filtering

Figure 3 Auto Correlation & Void Filtering

APPLIED RESEARCH ASSOCIATES, INC. 4300 San Mateo Blvd. NE, Albuquerque, New Mexico 87110 Title SMART FUZE ALGORITHM SCHEMATIC Drawing Classificatio rawing Number PROPRIETARY RGL010106 Status Rel - 02-FEB-06 Lundgren Drigin

Figure 7 **Double Void Elimination System**

Figure 4 Depth Subsystem

Void Detection

Figure 8 In Void Logic System

Expanding the Realm of Possibility

Expanding the Realm of Possibility

Program Accomplishments

- A Robust Matlab Simulink Algorithm Simulator was set-up
- The Algorithm was Tested against Multiple Real World Events (digital signals)
- The Algorithm was transferred to a 'g' Hardened Freescale DSP Controller Chip with Operator Interface
- Chip Operation was verified with Real World Analog Signal Inputs to the Chip
- The Algorithm is Patent Pending

