

# Practical Aspects of MIL-DTL-23659 Appendix A Initiator Testing

Barry Neyer
NDIA Fuze Conference
May 14th 2008



- ➤ The following discussion is the opinion of the author. It does not necessarily represent the opinion of PerkinElmer Optoelectronics or of any of its customers, either government of commercial.
- > The observations have been gathered through the years conducting these tests.

## This talk will address MIL-DTL-23659 Appendix A ...



- General Rational for test plan
- Qualification Matrix
- Number of tests required
- Firing Property Tests
- > All Fire Tests
- > Safety Tests
- Leak Testing



- "This appendix furnishes general requirements for the certification of Exploding Foil Initiators (EFIs) that are <u>used for safety sensitive initiation applications</u>. The purpose of the certification program is to establish fundamental EFI characteristics including the electrical response characteristics, soundness of mechanical design, output, <u>basic safety properties</u> and resistance to deleterious service environments."
- "The certification provided for in this document will normally be an interim step toward type certification of an EFI in a system, and will typically be <u>supplemented by additional</u> <u>testing</u> peculiar to the specific service application for which the EFI is intended."

# The majority of units tested in MIL-DTL-23659 ...



|        | Requirement                              | Α  | В  | С  | D  | Е | F  | G  | Н  | I  | J  | K  | L  | M  | N  | 0 | Total |
|--------|------------------------------------------|----|----|----|----|---|----|----|----|----|----|----|----|----|----|---|-------|
| -      | Quantity                                 | 30 | 30 | 30 | 30 | 5 | 10 | 30 | 30 | 50 | 50 | 50 | 50 | 50 | 50 | 5 | 500   |
| A.4.2  | Visual Inspection                        | Χ  | Χ  | Χ  | Χ  | Χ | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Х  | Χ  | Χ  | Χ | 500   |
| A.4.3  | Radiographic Examination                 | Χ  | Χ  | Χ  | Χ  | Χ | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Х  | Χ  | Χ  | Χ | 500   |
| A.4.4  | Bridge Circuit Resistance                | Χ  | Χ  | Χ  | Χ  | Χ | Χ  | Х  | Χ  | Χ  | Χ  | Χ  | Х  | Х  | Χ  | Χ | 500   |
| A.4.9  | Leakage                                  | Χ  | Χ  | Χ  | Χ  | Χ | Χ  | Х  | Χ  | Χ  | Χ  | Χ  | X  | X  | Χ  | Χ | 500   |
| A.4.5  | Firing Properties, Ambient               | Χ  |    |    |    |   |    |    |    |    |    |    |    |    |    |   | 30    |
| A.4.5  | Firing Properties, Cold                  |    | Χ  |    |    |   |    |    |    |    |    |    |    |    |    |   | 30    |
| A.4.5  | Firing Properties, Hot                   |    |    | Χ  |    |   |    |    |    |    |    |    |    |    |    |   | 30    |
| A.4.6  | Max No Damage Current                    |    |    |    | Χ  |   |    |    |    |    |    |    |    |    |    |   | 30    |
| A.4.7  | Thermal Cook-Off                         |    |    |    |    | Χ |    |    |    |    |    |    |    |    |    |   | 5     |
| A.4.10 | Electrical Cook-Off                      |    |    |    |    |   | Χ  |    |    |    |    |    |    |    |    |   | 10    |
| A.4.11 | Maximum Allowable Electrical Sensitivity |    |    |    |    |   |    | X  |    |    |    |    |    |    |    |   | 30    |
| A.4.12 | 1.5 Meter Drops                          |    |    |    |    |   |    |    | Χ  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.13 | Electrostatic Discharge                  |    |    |    |    |   |    |    |    |    |    |    | Х  |    |    |   | 50    |
| A.4.8  | Temperature Shock/Humidity               |    |    |    |    |   |    |    | Х  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.14 | Vibration                                |    |    |    |    |   |    |    | Χ  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.15 | Shock                                    |    |    |    |    |   |    |    | Χ  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.2  | Visual Inspection                        |    |    |    |    |   |    |    | X  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.3  | Radiographic Examination                 |    |    |    |    |   |    |    | X  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.4  | Bridge Circuit Resistance                |    |    |    |    |   |    |    | Χ  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.9  | Leakage                                  |    |    |    |    |   |    |    | Χ  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.16 | All Fire Performance, Ambient            |    |    |    |    |   |    |    |    | Χ  |    |    | Χ  |    |    |   | 100   |
| A.4.16 | All Fire Performance, Cold               |    |    |    |    |   |    |    |    |    | Χ  |    |    | Χ  |    |   | 100   |
| A.4.16 | All Fire Performance, Hot                |    |    |    |    |   |    |    |    |    |    | Χ  |    |    | Х  |   | 100   |
| A.4.5  | Firing Properties, Ambient               |    |    |    |    |   |    |    | Χ  |    |    |    |    |    |    |   | 30    |
| A.4.17 | High Firing Voltage                      |    |    |    |    |   |    |    |    |    |    |    |    |    |    | Χ | 5     |

Consistency / Safety 150

Safety 45

Performance 305



- Different groups are tested to reveal different properties
- Building 500 detonators should ensure that the production issues are resolved and the qualification lot has similar characteristics, including variation, to production lots
- > 30 units are required to give good means and standard deviations for the threshold (firing properties) tests
- ➤ Successfully firing 300 units "demonstrates the EFI has a reliability of at least 0.99 at 95% confidence after being subjected to common environmental stimuli. To establish this reliability a test quantity of 298 EFIs must be fired with no failures in the all-fire performance tests."

#### Do the 500 qualification detonators have similar ...



- > The Qualification Lot is often the "best" lot
  - Each step in the manufacture of the Qualification Lot is typically performed by a single, experienced assembler or technician who has just been trained to the manufacturing instructions and is observed by the development engineer
  - Custom piece parts for the Qualification Lot obtained from suppliers are often accepted after a First Article Inspection, and built by a single, experienced assembler or technician of the supplier
- ➤ The Qualification Lot, in almost all cases, contains a single batch of energetic material
- ➤ The Qualification Lot for EFI detonators is typically manufactured using chips from only a few wafers

### Do the 500 qualification detonators have similar ...



- Many different parameters control performance of EFI detonators (2 shown to left)
- Drawing package specifies range of each parameter
- Suppliers often required to submit First Article
- Supplier will try to center process
  - Often drawings are centered around delivered hardware



#### Later production detonators often have different ...



- Many different parameters control performance of EFI detonators (2 shown to left)
- Drawing package specifies range of each parameter
- Suppliers often required to submit First Article
- Supplier will try to center process
  - Often drawings are centered around delivered hardware
- Some lot later, a supplier's supplier will make a small change, and material will be at drawing limit after screening





- Firing Properties or Threshold tests determine the mean and standard deviation of the firing energy
- Small shifts to device parameters should be observable as shifts in the mean threshold

- Mean is unbiased
- For a sample size of 30, mean will be within ½
  Std Dev of true value
  90% of the time
- ➢ If the Std Dev is 2% of the mean (good device), you should see threshold shifts greater than 1%



... capable of determine device consistency or small process shifts



- Firing Properties or Threshold tests determine the mean and standard deviation of the firing energy
- Small shifts to device parameters should be observable as shifts in the mean threshold

> Significant shifts in the standard deviation could mean design

has insufficient margin

- Std Dev is normally biased low
- For a sample size of 30, it will be within 40% to 140% of the true value 90% of the time
- Can only see large relative changes in Std Dev



... capable of determine device consistency or small process shifts



Only approximately 50% of detonators will fire during threshold tests

➢ Increase in Std Dev due to large fraction of defective detonators is small compared with normal variation

> Hard to distinguish sub threshold failure from defective

detonator

➢ For a sample size of 30, the Std Dev will be lower than the 95% upper confidence limit, even when 15% of the detonators are defective





- Successfully firing 300 units "demonstrates the EFI has a reliability of at least 0.99 at 95% confidence after being subjected to common environmental stimuli. To establish this reliability a test quantity of 298 EFIs must be fired with no failures in the all-fire performance tests."
  - Only 150 units are tested after being subjected to common environmental stimuli, 150 are tested after no environments
  - Later lots will be made by different people, and with different materials from the supply chain
  - Some changes will be known, but many changes will be unknown
  - The 300 units successfully fired do not establish <u>design</u> reliability
- Need to perform all-fire tests periodically

## The majority of units tested in MIL-DTL-23659 ...



|        | Requirement                              | Α  | В  | С  | D  | Ε | F  | G  | Н  | I  | J  | K  | L  | M  | N  | 0 | Total |
|--------|------------------------------------------|----|----|----|----|---|----|----|----|----|----|----|----|----|----|---|-------|
| -      | Quantity                                 | 30 | 30 | 30 | 30 | 5 | 10 | 30 | 30 | 50 | 50 | 50 | 50 | 50 | 50 | 5 | 500   |
| A.4.2  | Visual Inspection                        | Х  | Χ  | Χ  | Χ  | Χ | Χ  | Х  | Х  | Х  | Х  | Χ  | Χ  | Х  | Χ  | Χ | 500   |
| A.4.3  | Radiographic Examination                 | Χ  | Χ  | Χ  | Χ  | Χ | Χ  | Х  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ | 500   |
| A.4.4  | Bridge Circuit Resistance                | Χ  | Χ  | Χ  | Χ  | Χ | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Х  | Х  | Χ | 500   |
| A.4.9  | Leakage                                  | Χ  | Χ  | Χ  | Χ  | Χ | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ | 500   |
| A.4.5  | Firing Properties, Ambient               | Χ  |    |    |    |   |    |    |    |    |    |    |    |    |    |   | 30    |
| A.4.5  | Firing Properties, Cold                  |    | Χ  |    |    |   |    |    |    |    |    |    |    |    |    |   | 30    |
| A.4.5  | Firing Properties, Hot                   |    |    | Χ  |    |   |    |    |    |    |    |    |    |    |    |   | 30    |
| A.4.6  | Max No Damage Current                    |    |    |    | Χ  |   |    |    |    |    |    |    |    |    |    |   | 30    |
| A.4.7  | Thermal Cook-Off                         |    |    |    |    | Χ |    |    |    |    |    |    |    |    |    |   | 5     |
| A.4.10 | Electrical Cook-Off                      |    |    |    |    |   | Χ  |    |    |    |    |    |    |    |    |   | 10    |
| A.4.11 | Maximum Allowable Electrical Sensitivity |    |    |    |    |   |    | X  |    |    |    |    |    |    |    |   | 30    |
| A.4.12 | 1.5 Meter Drops                          |    |    |    |    |   |    |    | Χ  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.13 | Electrostatic Discharge                  |    |    |    |    |   |    |    |    |    |    |    | Х  |    |    |   | 50    |
| A.4.8  | Temperature Shock/Humidity               |    |    |    |    |   |    |    | Х  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.14 | Vibration                                |    |    |    |    |   |    |    | Χ  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.15 | Shock                                    |    |    |    |    |   |    |    | Χ  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.2  | Visual Inspection                        |    |    |    |    |   |    |    | Χ  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.3  | Radiographic Examination                 |    |    |    |    |   |    |    | Χ  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.4  | Bridge Circuit Resistance                |    |    |    |    |   |    |    | Χ  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.9  | Leakage                                  |    |    |    |    |   |    |    | Χ  | Χ  | Χ  | Χ  |    |    |    |   | 180   |
| A.4.16 | All Fire Performance, Ambient            |    |    |    |    |   |    |    |    | Χ  |    |    | Χ  |    |    |   | 100   |
| A.4.16 | All Fire Performance, Cold               |    |    |    |    |   |    |    |    |    | Χ  |    |    | Χ  |    |   | 100   |
| A.4.16 | All Fire Performance, Hot                |    |    |    |    |   |    |    |    |    |    | Χ  |    |    | Χ  |   | 100   |
| A.4.5  | Firing Properties, Ambient               |    |    |    |    |   |    |    | Χ  |    |    |    |    |    |    |   | 30    |
| A.4.17 | High Firing Voltage                      |    |    |    |    |   |    |    |    |    |    |    |    |    |    | Χ | 5     |

Consistency / Safety 150

Safety 45

Performance 305

**All-Fire after Environments 150** 

... are for performance, not safety



- ➤ A.4.10: The Electrical Cook-Off tests determine "The reaction of the bare EFI to exposure to common AC and DC voltage sources up to 500 volts shall be determined."
- ➤ A.6.7.1: "The input to the EFI shall be energized from a 60 hertz AC source at 440 VAC; the power source must be capable of sustaining a minimum short circuit current of 20 amperes."
- ➤ A.6.7.2: "The input to the EFI shall be energized from a DC source at <u>28 volts</u>; the power source must be capable of sustaining a minimum short circuit current of <u>10 amperes</u>."
- ➤ Almost any EFI will function when fired from a suitable capacitor charged to 500 volts.
- Many out-of-line safe arm and fire systems would fail this same electrical cook-off requirement.



- Both through and bombardment leak measurements are highly dependent on test technique and measurement parameters
  - Measurement indicated on helium leak detector is indirectly related to actual leak rate
  - Leak rate measured by Bombardment leak equipment, *I*, is complex function of the real leak rate, L, and test parameters

$$l = L(1 - e^{-LT/V})e^{-Lt/V}P/P_{atm}$$

- Through leak tests usually underestimate actual leak rate
- The typical "hermetically" sealed detonator with a leak rate of 10<sup>-6</sup> cc/s will readily admit water and undergo a complete air exchange in a few hours.
  - To achieve a 10 year life, need to specify a leak rate of 10<sup>-10</sup> cc/s, well beyond the ability of many leak detection systems.



- Firing Property Tests are an important tool to characterize shifts in production
  - They can help to establish design margins
  - They <u>can not</u> prove device reliability
  - They <u>can not</u> detect even significant fraction of defective devices
- All Fire Tests conducted during device qualification do not prove <u>design</u> reliability.
  - It is important to conduct periodic all-fire tests during production