

52nd Annual Fuze Conference 13-15 May 2008, Sparks, NV

SBF - Smart Barometric Fuze

Presented by : Igal Tidhar – igalt@rafael.co.il Amoz Davidson – davidben@rafael.co.il

www.rafael.co.il

RAFAEL Advanced Defense Systems Ltd.

1

May 14 2008

- Introducing RAFAEL Advanced Defense Systems LTD
- Introducing RAFAEL's Expendable Decoy Systems
- Motivation for the SBF development
- Challenges
- Classical problematic aspects
- SBF Logic and Block diagram
- Critical components
- Conclusions and Future

Rafael's Mission

- RAFAEL as a system house aspires to provide a quality defense products to the international defense market, while maintaining its special contact with the IDF.
- RAFAEL predicts the needs of current and future combat forces worldwide and provides the technologies and systems required by those forces.

EW Expendable Decoy Systems

77.17

Rotatable Launcher

Rotatable Launcher With SRBOC Tubes

EW Expendable Decoys Clips

EW Expendable Decoy Systems Integrated Ship-Defense

- Rotatable launchers
- Three lines of defense
- Precise decoy location
- Computerized operation

11

LRCR

Performance	
RCS	Ship Size
Frequency	X,C,S
Range	12-14km.
Altitude	900m.
Rise Time les	s than 10 sec.
Persistence	up to 10 min.

Dimensions

Rocket Diameter	90mm.
Rocket Length	922mm.
Fins Span	179mm.
Rocket Weight	9.4kg.
Chaff Weight	1.3kg.

Motivation for the SBF Development

- Answer the Fuze's classical problems
- Better safety
- Better reliability
- One fuze for all decoys and launchers
- Programmable electronics
- Miniaturization

Challenges

- Flexibility
- Compatibility with launchers
- Adaptation to Rocket's Type
- Mode of Operation Selection

Classical Problematic Aspects

- Low Power / Energy Consumption
- Safety
- Environmental Conditions
- Reliability
- Low cost

Energy Consumption

- The current fuze approach
 - Energized by a limited pulse width
 - Input capacitance check before launch
 - Electro-Mechanical pressure switch
 - Analog electronics design
- SBF approach
 - Energized by the same pulse
 - Same Input capacitance
 - Low power electronic pressure sensor
 - Low power CPU TI's MSP430

- 2 CPUs in series arming
- BIT before launching
- Capacitors discharge
- S&A Device
- Safety delay
- Time out fail safe

Block Diagram

Logic's Capacitors Bank

Logic's Capacitors Bank Before switching – Serial charge

Logic's Capacitors Bank After switching – Parallel Discharge

The Pressure Sensor

MS5534A

BAROMETER MODULE

- Integrated pressure sensor
- Pressure range 300-1100 mbar
- ♦ 15 Bit ADC
- 6 coefficients for a software compensation stored on-chip
- 3-wire serial interface
- 1 system clock line (32.768 kHz)
- Low voltage / low power

Pressure Sensor Block Diagram

- Main Performances
 - Low power microcontrollers TI's MSP430
 - 2 serial CPUs for arming
 - Idle state while not in use energy conservation
 - Flexibility in design
 - Activation algorithm, performance and accuracy are mainly software dependent
 - Variable sampling rate along mission
 - Low cost

- Electrical Characteristics
 - -Low Supply-Voltage Range, 1.8 V . . . 3.6 V
 - –Ultralow-Power Consumption:
 - •Active Mode: 280 μA at 1 MHz, 2.2V
 - •Standby Mode: 1.6 µA
 - –Wake-Up From Standby Mode in less than 6 µs
 - -Two 16-Bit Timers
 - -On-Chip Comparator
 - -Serial Onboard Programming

CPU

Functional block diagram

MSP430x13x

Conclusions and Future

- The SBF new design fits all its specification and requirements
- Prototypes has been assembled and successfully tested
- We believe that the SBF is the next generation fuze for EW Expendable Decoys

Thank you

?Questions?