

Modular Advanced Fuze Interface Architecture (MAFIA)

52nd NDIA Fuze Conference Sparks, NV 14 May 2008

Jason R. Foley, Ph.D.
Matthew W. Bridge
Fuzes Branch
Munitions Directorate
Air Force Research Laboratory

Outline

- Purpose
- What This Is Not
- Fuze Architectures & DoD Acquisition
 - Current Approach
 - Modular, Open Systems
- Why This Program? Why Now?

- Distributed Fuzing
 - Perceived Benefits
 - Arguments Against
- Lessons Learned
- MAFIA Approach
- Summary
- Questions

Purpose

- Stimulate Dialogue
 - Within Fuzing and Ordnance Communities
 - Diametric Shift in Systems Engineering
- Establish That Distributed Fuzing Can:
 - Provide Benefits Worth Having
 - Be Compatible with System Safety
- Encourage Community To Explore and Implement Distributed Fuzing For Safe, Viable Systems
 - Via Discussions/Ad-Hoc Working Groups

- Erosion Of Any Safety Function Via:
 - "Standardization"
 - Interchangeable "Fuzes"
 - Interchangeable Modules (Unlimited "Mix-N-Match")
 - Forced Functional Distribution
 - Unchecked Growth (To Include Technology)
 - Unverifiable Dependence

Legacy Systems

- Fuze
- Warhead
- Explosive

Acquisition & Architecture

- Fuzes An Afterthought
- Fuzes Are Separate Acquisition Items
 - "Commodities"

Fuzing System Responsibilities

- Safety
- Arming
- Sensing & Target ID
- Explosive Initiation
- Communications

Most Functions Are Co-Located Within Fuze "Can"

- Legacy Weapon Fuzes Are Separate Components
 - Stored Separately
- Imposes Capability Constraints

MOSA: Modular Open Systems Approach

- Integrated Business & Technical Strategy
- Preferred By DoD Acquisition Policy

Intent: Faster, Lower Cost Development, Integration

- Predicted Improvement In "-Ilities"
 - Affordability, Reliability, Etc.
- Piecewise Capability Development
 - Incremental Acquisition Strategy
 - "Plug & Play" Compliant Systems
 - Multiple Subs For Multiple Modules
 - Modular Capabilities Become "COTS"
 - Service & Contractor Mix-N-Match

S&A Slot 1 Firing Circuit

S&A Slot 2 Det/Lead/Booster

Burst Pt Sense Add-ons

Modular Architecture

Good Topics for Working Group Discussion

- Fuze "Commodity" Approach
 - Imposes Constraints
 - Lost Intended Benefits
- Available Technologies Do Make A Difference
 - Less Sensitive Booster Materials
 - Mission Programmability
 - Post-Impact Survivability & Functionality
- Fuzes Are Getting Squeezed
 - Smaller Weapon Systems
 - Parts (Electronic) Obsolescence
 - Disproportionate Cost Focus

- Why not?
 - Challenge Traditional Thinking
 - Perhaps This (Modularization)
 Is The Way To Go
 - Somebody's Got To Try It!
- What Is The Larger Picture?
 - What About Readiness?
 - Easier To Develop/Mature
 Pieces Than The Sum Total
 - Pro-Active Involvement Means Having A Say In How It Is Accomplished

- Allow Target Detection Device (TDD) To Remain With Warhead
 - Nose Fuzing (TDD) Is Desirable For Penetrator Applications
 - Liberation From Tail Slap
 - Reduce TDD Sensor Latency
 - Eliminate Traditional "Fuze Well"
 - Exploit Energetic Rebound (and Not Be A Victim of It!)
- Facilitates Standardized Communication
 - Launch Platform to Weapon
 - Weapon to Fuze
 - Fuze to Module

- Smaller Functional Modules Could:
 - Support Trend Towards Smaller Weapons
 - Allow Diverse Placement Within Weapon Systems
 - Example: Redundant Fuzing
 - Allow For Multiple Sourcing (Procurement)
 - Reduce Acquisition Cycle
 - Developmental Testing According To Need
 - Qualify/Re-Qualify According To Need
 - Support/Instrumentation Demands Reduced
 - Commit To Physical Segregation Between Safety & Non-Safety Functions
 - Allow For Trending In Mature Design (Over Time)

- No Legacy Business Case
 - Large Inventory Of Legacy Weapons
 - Significant Investment Within Inventory Unitary Fuzes
- No Prime/Sub Contractor Incentives For New Systems
 - Use "Off-The-Shelf" Fuzes
 - Regurgitate All or Part of Existing Designs
- Requires Significant Up-Front Investment
 - Personnel & Program Funds
 - No Obvious Short Term "ROI"
- Establishing Joint Rules Challenging/Time-Consuming
 - Requirements Document(s)
 - Safety
 - Systems/Subsystems Interface
 - Environments
 - Test/Verification
 - Post Mission Features

Lessons Learned

- Society Of Automotive Engineers (SAE) Fuze Standardization Working Group (AS1-B6)
- Intent: Standardize Air-Delivered Ordnance Fuzing
- Met Quarterly Over Approximately Three Years
- Group Consisted Of:
 - Foreign and Domestic
 - Government (Tri-Service) and Contractors
- Second Group Formed (AS1-B7) To Address Mechanical Standardization Such As Fuze Well

- Group Struggled With What To "Standardize"
 - "Fuze" Verses "Fuzing System"
 - Continued Push For Subsystem Interchangeability
 Before System Interoperability Established
 - Contractor Influence Not Always Constructive
 - Non-Fuze Influence Not Constructive
 - SAE Limitations
 - Specialty Attitude That "Only ____ Can Solve Everything Right"
 - ITAR/Foreign Dialogue Limited (UAI Not Discussed)
 - Effort To Accommodate Legacy Systems "Ball-&-Chain"
 - Perception of Constant Safety "Adult Supervision"

- Design/Promote A Modular Fuze Architecture By:
 - Parsing Fuzing System Functional Allocations
 - Communication
 - Safety
 - Target Detection Device (TDD)
 - Determining/Defining Interfaces
 - Interface Control Document (ICD) Style
 - Establish Rules/Conditions That Can Allow "Plug & Play" Functionality
 - Determine Certification, Conformance, Metrics
 - Set Minimum Qualifications To Satisfy Requirements
 - Support Legacy Weapon Systems (As Reasonable)

MAFIA Status

- Unfunded program (for now)
 - Related Air Force Program Slated To Begin In FY10
- Beginning Socialization and Groundwork
 - Government Advocacy
 - DoD Fuze IPT
 - Other Fuze Communities (Technical & Acquisition)
 - DoE-DoD Technical Coordinating Groups (TCG's)
 - Fuze Engineering Standardization Working Group (FESWG)
 - Support Is Welcome <u>Now</u>

Summary

18

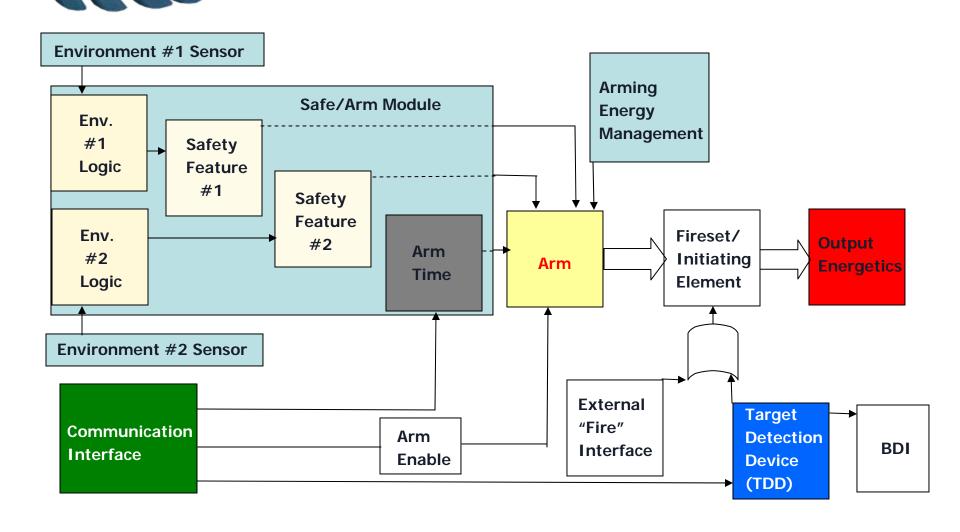
- Modular Fuzes Can Provide Significant Technical & Acquisition Advantages
 - Decentralized Location
 - Incremental Acquisition
 - Technology Improvements
 - um, sir?

- Legacy Fuze Approach
 - Imposes Constraints On System Performance
 - "Way It's Always Been Done"
- Ramping Program Up Now
 - Long Road Ahead

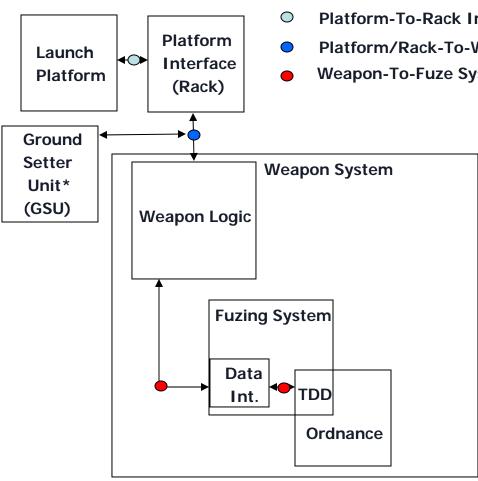
Questions?

Contact Information

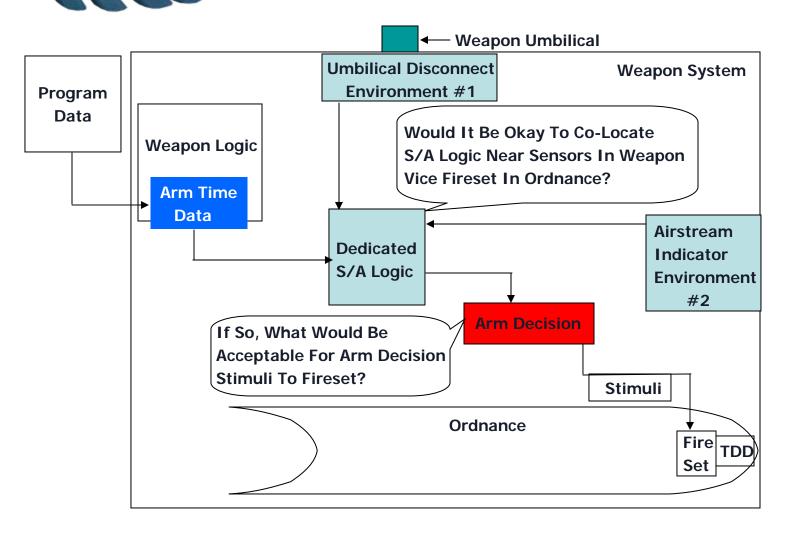
- Mr. Matthew Bridge
- Systems Engineer
 Penetration Fuzing Team
 Fuzes Branch
 Munitions Directorate
- 850-883-0580 (DSN 875-0580)
- matthew.bridge@eglin.af.mil
- AFRL/RWMF
 306 W. Eglin Blvd., Bldg. 432
 Eglin AFB, FL 32542



Backup Slides


Notional Fuzing System Block Diagram

- Platform-To-Rack Interface Defined Via Vehicle
- Platform/Rack-To-Weapon Interface Defined Via MIL-STD-1760
- Weapon-To-Fuze System & Fuzing System Interface Is Undefined


*Note: Current Plans Are To Emulate A MIL-STD-1760 Interface At To Allow A Ground Setter Unit (GSU) Capability.

Weapon-To-Fuzing System Data Includes Arm Time, Hi/Lo Drag, Post Impact Instructions Such As Void/Layer, Etc.

Information Transfer Is Bi-Directional

