

Weapons Curvilinear trajectory and smart fuze calculations suitable for hard target defeat modeling

52nd Annual Fuze Conference

Sparks, NV, USA, 13-15 May 2008

Centre d'Etudes de Gramat

BP 80200 F-46500 GRAMAT

DÉLÉGATION GÉNÉRALE POUR L'ARMEMENT

DGA

J-M Sibeaud Th. Lacaze A. Lefrançois

CEG is a Technical Center of the French MoD procurement Agency (DGA)

- Bring better knowledge of <u>Terminal effectiveness</u> of Conventional Air-to-Ground weapons and missiles
- Provide support to program managers for new weapons development (SCALP/EG, AASM, MdCN, LRM NG)
- Provide Armée de l'air and Aéronavale (French Air Force and Navy Air Force) with means for determining effectiveness of strikes and perform mission planning
 - Capabilities against hardened targets (Hard target defeat)
 - Improve warhead lethality
 - Capability to control weapon's depth of burst
 - Minimize collateral damage

Develop smart fuzing capabilities

MINISTÈRE DE LA DÉFENSE

Slide N°2 / 19

- Calpen3D, an analytical tool for smart fuzing
- Validation against direct finite element simulations
- Validation against experiments
- Smart fuzing use

CalPen 3D : basic theory of curvilinear penetration

- Penetration module of PLEIADES/I the Vulnerability / Lethality code currently in operation within the French MoD
- Rigid body kinematics (Based on DAFL and SCE theory)
- Curvilinear trajectory
- Hard and soft targets formulations
 - Standard Concrete
 - High resistance concrete
 - Reinforcement
 - Soils (Wayne Young's S number)
- Output
 - Residual post perforation velocity and attitude ...

Centre d'Études de Gramat

Enhanced perforation algorithm

- Perforation modeled with Interface Proximity Index (IPI)
 - IPI value based on user experience
- Enhanced algorithm based on

Centre d'Études de Gramat

- → differential treatment of ogive and afterboby
- → Ogive IPI is slab thickness dependant
- Goal : Predict accurately Projectile velocity <u>and</u> orientation

- calpen3D, an analytical tool for smart fuzing
- Validation against direct finite element simulations
- Validation against experiments
- Smart fuzing use

Slide N°6 / 19

Validation against numerical simulation

Validation against <u>numerical simulation</u>

- Calpen3D, an analytical tool for smart fuzing
- Validation against direct finite element simulations
- Validation against experiments
- Smart fuzing use

Slide N°10 / 19

Validation against experiments Pre-damaged concrete target

Validation in more complex configurations resulting from vertical attacks against real building: the corner effect

- Configurations of impact representative of nearly vertical attacks of multi-story buildings
- Vertical wall next after horizontal slab
- Perform CalPen3D runs on these configurations

Centre d'Études de Gramat

Configuration	V (m/s)	AOI (°)	AOA (°)	d (m)
Т5-с	359	41	0	0.5
T5-d	349	29.7	+1.5	1.09

Reference :

model scale experiments (scale .7) performed in CEA/DAM test site, France, reported by E. Buzaud CEG (see paper published in **ISIEMS 11 in Germany** (2003)

- high speed cameras (HYCAM, 8000 f/s or 16000 f/s)
- AOI, AOA
 - Tri-axis acceleration recording at projectile CoG
 - Scabbing process (HYCAM, 8000 f/s)
 - **Residual damage** topography

- calpen3D, an analytical tool for smart fuzing
- Validation against direct finite element simulations
- Validation against experiments
- Smart fuzing use

Smart fuzing

Assuming : projectile not spinning, plane trajectory in (X,Z) = (z,x)

Case 2 Concrete Case#1-configuration#1: triaxial nose and tail sensing Case#2-configuration#1: triaxial nose and tail sensing 2 3 5 4 X (m)

Full knowledge of projectiles paths into the target from embedded sensors output provided that initial attitudes and velocities are known

MINISTÈRE DE LA DÉFENSE

Centre d'Études de Gramat

One single G-load recording in the projectile axis

Algorithms for smart fuzing may be based on void sensing and/or slab counting. Initial projectile velocity and attitude must be known upon impact (knowledge of this information can be obtained from the guided munition inertial plateform)

Limitation : 1) projectile rotation - and therefore ricochet - cannot be detected

2) deceleration signature when perforating the soil is similar to the one observed during ricochet

Other limitation of void sensing

Vertical and horizontal slabs cannot be differentiated

Summary and Conclusion

- Modelling of hard target defeat requires that penetration calculations are performed
 - Improving warhead lethality while improving control on weapon's depth of burst requires embedded smart logic
- Paper relates on how making use of CalPen3D to assess smart fuzing algorithms in various representative situations (4 slabs, semi-infinite, pre-damaged targets, corner effects)

Further effort on real world data

- Real time kinematics using appropriate filtering and DSP
- 3D signals (Euler angles)
- Non perfectly rigid projectile

Slide N°19 / 19