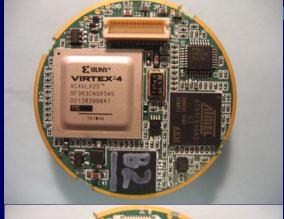

Electronic Test Fuze


Hamish Malin
NSWCDD G33
Precision and Advanced
Systems Branch

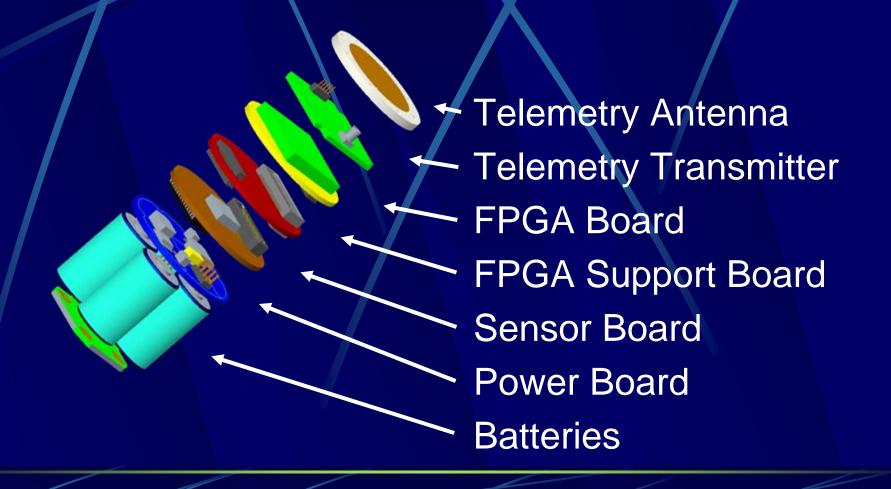
Program Overview

Electronic Test Fuze (ETF) designed to support Guidance Integrated Fuze (GIF) program

GPS SAASM Receiver Development

- No Existing Product Could Meet GIF Requirements
- Awarded Contract to Mayflower Communications for Development of GPS Receiver
 - Low Cost (< \$500)
 - Low Power (< 1W)
 - Small Size (< 2 in²)
- Phased approach:
 - C/A Version w/ FPGA Available Now!!
 - P(Y) SAASM
 Receiver (TRL 6)
 Available Fall 2008
- Not GIF-Centric
 - One Product, Many Applications

40mm diameter (VP Form Factor)



Overview - ETF

- Fully designed in-house at NSWCDD
- Initially designed to support in-flight testing of ElectRelease TM for Lift-GIF
- Designed to support realistic gun-shock testing of myriad subsystems
- Six successful flight tests to date

ETF General Layout

FPGA Board

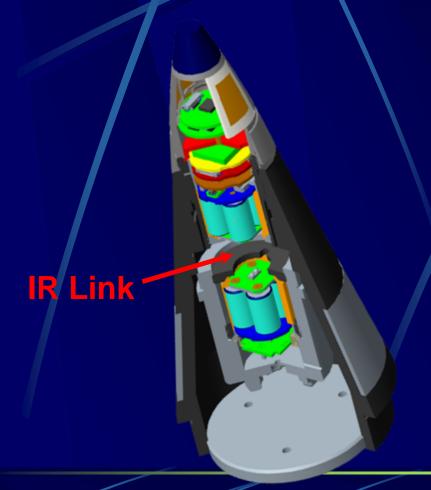
- Interfaces with ADCs and sensors
- Controls & monitors various subsystems under test
 - HOB sensor,
 - ElectRelease actuator,
 - IR transceivers,
 - GPS Rx
- Measures (time = 0) from forward-looking accelerometer
- Encodes test data into telemetry stream

FPGA architecture makes ETF adaptable for future tests

Sensor Board

- Silicon Designs 20k-g 1-axis accelerometer
- Honeywell HMC 1053 3-axis magnetometer
- 2 Maxim MAX274 8th-Order Active Filters provide 2nd-Order Chebyshev LPF for each channel
- 2 12-bit, 8-channel TI ADS7852 ADCs sample at up to 32 ksps

Vias available for additional external sensors


Battery Puck & Power Board

- Current configuration utilizes 4 CR2s
- Puck is designed to be removable such that fresh batteries can be used for flight
- Supplies 5V, 2A; 4V, 500mA
- Other voltages possible
- Current puck can power full ETF stack for > 2hrs

Projectile-Embedded Telemetry

IR Battery Puck

TM Transmitter & Antenna

- M/A-COM MA06836 ½-Watt S-Band HSTSS Telemetry Transmitter
- Three Antenna Versions
 - Round D-Fuze TM Antenna for 'simple' ETF
 - IR link integrated between the fuze & the projectile to expand fuze test volume
 - GIF GPS Antennas also re-tuned to S-Band for future test applications

TM Data format

- Manchester encoded
- 1 Mbps data rate
- 1024 bits/frame (1.024 ms frame), including:
 - 32 bit frame sync
 - 24 bit frame counter
 - 32 bit CRC

ETF Telemetry Frame - 18 April 2007 Test Shot updated on 16 April 2007

Byte	e 0 1 2 3		. 4	1 5	6 7	8 9	10 11	12 13	14 15	16 17	18 19	20 21	22 23	24 25	26 27	28 29	30 31
16-bit word	it word 0 1			2 3		4 5		6 7		8 9		10 11		12	13	14	15
32-bit word	it word 0				1		2	3			4		5	6		-	7
Data	Frame Sync Data (0xFAF32019)			А	F Power	G	PS	G	PS		Frame Counter	А	M1(i)	M1(j)	M1(k)		

Byte	32 33	34 35	36 37	38 39	40 41	42 43	44 45	46 47	48 49	50 51	52 53	54 55	56 57	58 59	60 61	62 63
16-bit word	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32-bit word 8			9	1	0	1	1	1	12		13	1	14	1	5	
Data	Data GPS		А	GPS	G	PS	G	PS	G	PS	А					

Byte	64 6	55	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
16-bit word	32		3	3	3	4	3	5	3	6	3	7	3	8	3	9	4	10	4	11	4	2	4	3	4	4	4	5	4	6	47	7
32-bit word 16				1	7			1	8			1	9			2	20			2	:1				2			2	3			
Data						Α																Α	N	/11(i)	N	/11(j)	N	11(k)				

Byte	96 97	98 99	100 101	102 103	104 105	106 107	108 109	110 111	112 113	114 115	116 117	118 119	120 121	122 123	124 125	126 127
16-bit word	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
32-bit word	32-bit word 24		2	.5	2	6	2	.7	2	8	2	9	30	C	31	
Data	Data		А								A		TOF		CRC Ch	ecksum

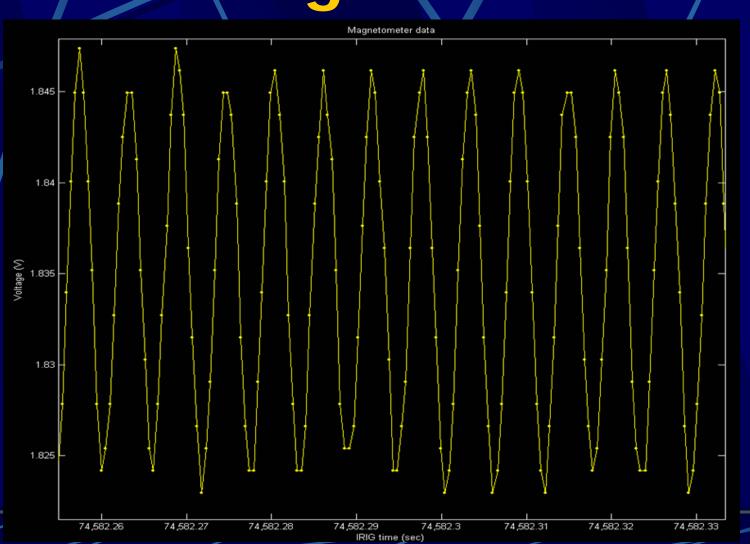
			Resolution	# of	Samples /	Sample	Bandwidth
	Label	Signal	(bits)	Channels	Frame	Rate (kHz)	(kHz)
	А	High-G Accelerometer	12	1	8	7.81	93.75
*	M(i) M(j) M(k)	3-axis Mags (1 = South, 2 = North)	12	3	2	1.95	70.31
	TOF	Time of Flight (ms)	20	1	1	0.98	19.53
*	F	Flags: In flight; Actuator Power; HOB Power; HOB CO	1	1	1	0.98	0.98
	GPS	GPS Data, see additional sheet for more info	168	1	1	0.98	164.06
	Frame Sync	Frame Sync (0xFAF32019)	32	1	1	0.98	31.25
	Frame Counter	24-bit counter (~4.8 hours of unique numbers)	24	1	1	0.98	23.44
	CRC Checksum	32-bit Cyclic Redundancy Check	32	1	1	0.98	31.25
						Total:	43.46%

Flight Test 1 August 2006

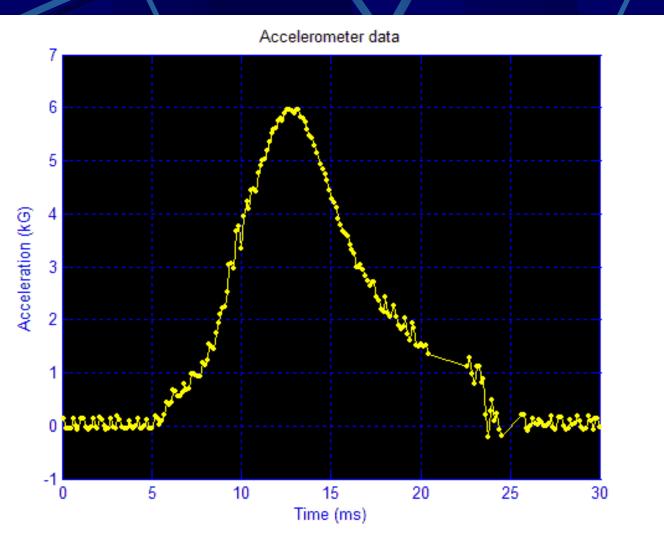
- Core ETF stack shot at 7R out of 155mm Howitzer on AA Fuze Range
- Primary objective of survival met
- 99.96% of telemetry data recovered with receivers stationed at fuze range
- Primary sensors survived and functioned

Flight Test 2 November 2006

- ETF with IR Link shot at 7R out of 155mm Howitzer on AA Fuze Range
- Primary objective of survival met, both for fuze and aft TM section
- Primary sensors survived and functioned

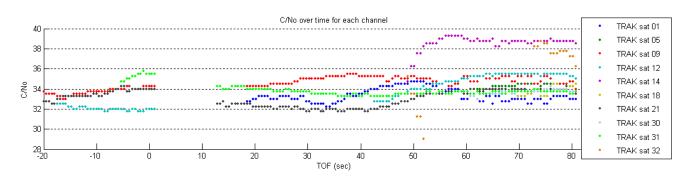

Flight Test 3 April 2007

- ETF with Mayflower GPS receiver shot at 7W out of 155mm Howitzer on AA Fuze Range
- Primary objective of receiver survival met

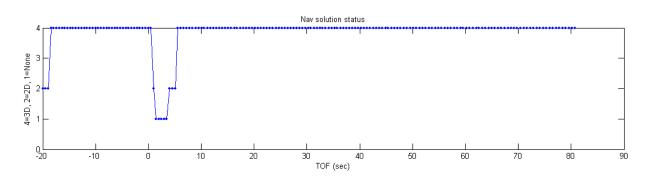


Mag. Data

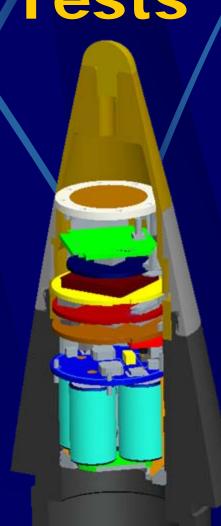
In-Bore Accel. Data


Flight Test 4 August 2007

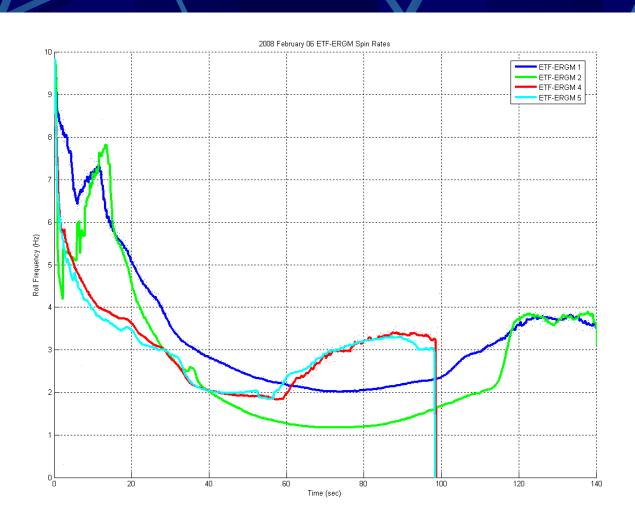
- ETF with C/A Mayflower GPS receiver shot at 7W out of 155mm Howitzer on AA Fuze Range
- 99% of telemetry data recovered with receivers stationed at fuze range
- Primary objective of receiver survival met



GPS Rx Test Data



ERGM Flight Tests


- (5) Core ETFs shot at WSMR to support ERGM T&E
- (3) on ERGM rocket motor rounds; (2) on baseline rounds
- Primary objective of characterizing projectile roll-rates met

ERGM Flight Data

ETF-WPML

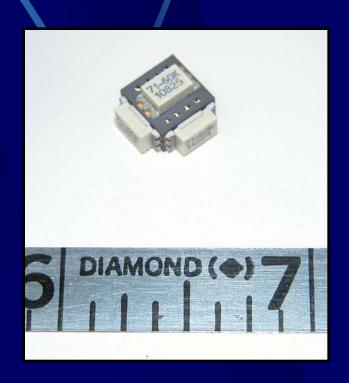
- ETF currently being integrated into Water Piercing Missile Launcher (WPML) test package
- Primary objectives are to measure shock environment and sense possible contact with water during firing
- June flight test on JATO rocket motor scheduled; future testing on other rocket platforms dependent on results

ETF-WPML

 (2) Auxiliary Sensor Modules with 3-axis accels and water sensors are in development

Battery Puck expanded for longer life (10 hrs)

6" O.D. Flight Vehicle


Sensor Modules Core Module

Battery Puck

Additional ETF Developments

- Currently designing board to interface
 Endevco 60k-g tri-axial accelerometer with ETF
- Funded to shock-harden core system to 50+ k-g's

Euture ETF Uses

- May 2008 (2) additional C/A GPS Receiver
 Test Shots
- June 2008 ETF-WPML Testing of JATO Rocket Motor
- 2nd quarter 2009 Mayflower P(Y) GPS Receiver Test Shots
- This bullet reserved for YOUR subsystem!

2+ cubic inches available to test other subsystems

Basic Cost

- Core Electronics: \$3500
- Mechanical Hardware: \$3000
- EE Hardware Test: \$2000
- Mechanical Assembly: \$1500

Total: \$10K / unit

Acknowledgements

- Electrical Team Mike Irwin, Travis James, Ted Kuhn, Hamish Malin, Wayne Worrell
- Mechanical Team Marc Bassett, Mark Engel, Nathan Joswiak
- Contact: hamish.malin@navy.mil