U.S. Army Armament Research, Development & Engineering Center Picatinny, NJ

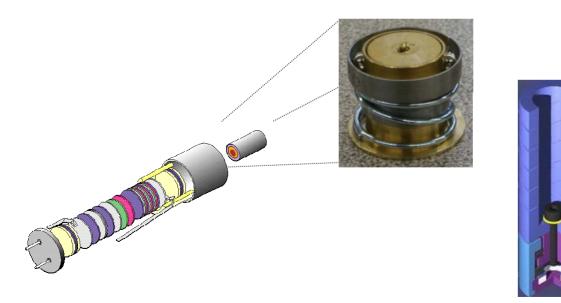
Novel Munitions Power Systems

15 May 2008

PRESENTED BY Karen Amabile, Power Sources APO Chris Janow, Power Sources Senior Technology Manager

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Known Issues:


- Energy & power densities of current batteries are limited by dated, insufficient manufacturing techniques that do not meet future user requirements, limiting capability and functionality
- Issues with manufacturing, reliability and functionality

Challenges:

- Alternative energy systems not proven in munitions
- Limited mission times for thermals due to heat losses
- Small, high energy/high density thermals do not exist
- Corrosive, moisture sensitive electrolytes for liquid reserves impact producibility

Objective:

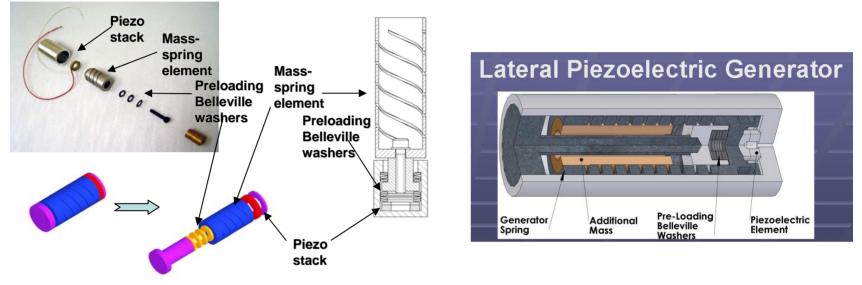
 To develop advanced, affordable, on-board gun-fired munitions power source technologies with increased energy and power densities, reduced volume and weight, increased mission time & improved extreme temperature performance.

Technical Approach

- ✓ Improve Thermal Batteries by novel thermal management techniques that will result in longer lasting yet smaller batteries
- Improve Liquid Reserve Batteries by development of new organic electrolytes that will lead to higher production throughput and lower costs and catalyzed cathodes that provide higher power and energy densities
- Develop new types of energy harvesters to J supplement and reduce the dependence on batteries ("Energy Hybrid Systems")

Applications:

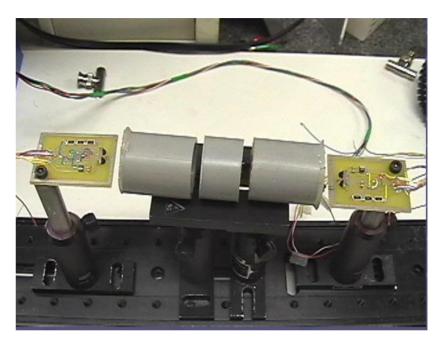
- Excalibur
- SDF
- Common Missile
- Rockets (e.g. MLRS)
- Next Generation PGMM
- MOFA
- ETF for Mortars
- Precision Guided Kit
- Supersonic Projectiles


Technology drivers:

- Affordable & producible
- Higher energy & power density
- Reduced volume & weight
- Improved energy management & optimization

> Thrust Area #1 Hybrid Energy Systems (HES):

- Bring a systems approach to the management of power requirements throughout the mission profile of future advanced munitions
- Increase munitions energy density, mission times and functionality, to decrease their cost and improve the munitions power system reliability, manufacturability and future application interchangeability~ "scalable power systems"
- Develop new types of energy harvesters to supplement and reduce the dependence on batteries ("Hybrid Energy Systems").
- Convert and combine energy in various forms that is resident in the ballistic environment of gun fired munitions.
 TECHNOLOGY DRIVEN, WARFIGHTER FOCUSED.


Piezoelectric Generator

- Harvests mechanical energy naturally resident in projectile using firing shock and vibration generated during flight
- Converts mechanical energy into electrical energy using piezoelectric materials
- They can use axial or lateral motion for harvesting
- These are compact designs of approx .75" diameter and 1.25" length
- They are very safe and cannot generate power until fired.
- The shelf life well exceeds 20 yrs.

***** Optical Carrier

- Uses near-infrared laser to transmit data and/or power simulataneously
- Developed for low cost and low power communication within a round
- First use of a "guided" free space optical communication network for munitions
- Uses an industry standard IrDA serial communication platform
- Data transfer rate of 4 to 16 Mb/s
- EMI immunity

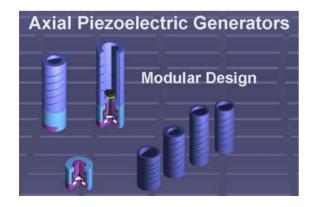
- ✓ High G tolerance
- ✓ Very low cost
- Data and power transmitted through window to munitions' exterior
- ✓ Power transfer of 1J in less than 1/10 second

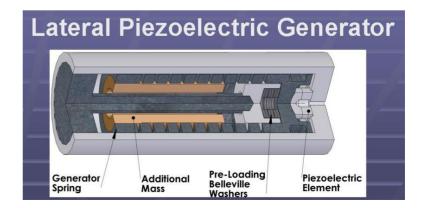
Successful Completion of HES Flight Tests in 4QFY07

 ✓ Integrated, prepared and successfully fired three
 M830A1 rounds at APG with
 HES components

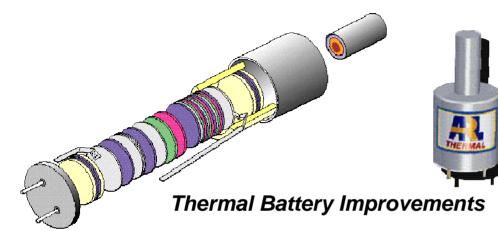
 ✓ Proved survivability and demonstrated functionality of Hybrid Energy Systems components

 ✓ Proved survivability and demonstrated functionality of a conformal thermal battery & nano-reserve battery



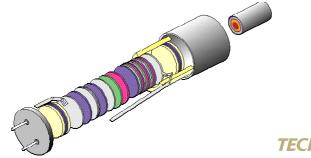


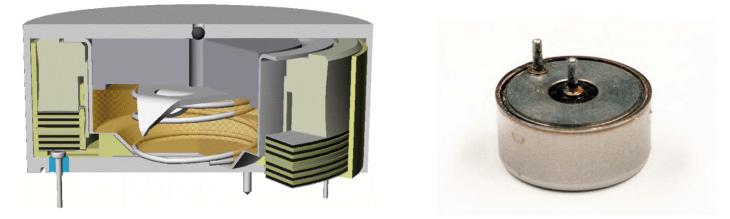
Demonstrated Piezoelectric Generator as TRL 7 component


- ✓Built & tested various types of energy harvesters, several types of designs to be mounted axially and radially for flight tests to demonstrate energy harvesting in tri-axial configuration
- ✓These components each have a novel method of harvesting energy
- ✓ Components were launched in excess of 35K G's & survived
- ✓ First time converted energy using piezoelectric harvester at over 30% efficiency
- ✓ Satisfied the 20 mW ATO requirement

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Thrust Area #2 Thermal Battery Improvements




Miniature Igniter

- Focus on thermal battery heat management and novel insulation materials to increase energy density and runtime.
- Evaluate the effects of gas gettering which is dispersed throughout the layers of thermal battery insulation to increase runtime.
- Develop battery prototypes with higher energy densities in a smaller volume that meets maximum time of flight requirements
- Miniature igniter utilizes firing acceleration and through a mechanical means initiates the ignition system required to activate a thermal battery
 TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Demonstrated Improved Thermal Battery as a TRL 5 component in 4QFY07
- Preparation to demonstrate Thermal Battery enhancements during Flight Tests at YPG in 4QFY08 to achieve TRL 7
 - Achieved 30% increase in runtime by sidewall heating providing better heat containment with novel insulation material & sidewall heating
 - ✓ Demonstrated significant increase in runtime of thermal battery with higher number of heat pellets
 - Demonstrated certain metallic gas getters which improve battery run-time

> Thrust Area #3: Liquid Reserve Batteries

- Develop an organic-based liquid reserve battery that would replace the extremely corrosive electrolyte that is very costly to produce which will lead to improved producibility
- Increase the power and energy density while providing aging and stability improvements to the lithium based systems
- Improve Liquid Reserve Batteries by development of catalyzed cathodes that provide higher power and energy densities.

> Liquid Reserve Batteries

- Developed organic based electrochemistry: down selection of high-performing organic electrolyte of LiBF4 in gBL-DME demonstrated performance and increased stability of 3.6V cathode/electrolyte system
- Optimized Teflon content in MnO2 cathode has shown 60% increase in cell runtime.
- Developed and prototyping of battery design configuration to meet battery performance requirements for higher production consistency
 - High rate oxyhalides system shown over 45% increased runtime by the inclusion of catalyst additives to liquid reserve battery electrochemistry.

Path Forward

- Combine harvested energy with stored chemical energy reducing the dependency on current method of using solely batteries in munition systems
- To provide efficient, continuous power systems for military application to power munitions, rockets and missiles by combining harvested energy with electrochemical technologies in reserve battery systems